Solution:
The idea of an atom proposed by the Greek philosophers because:
According to Greek Philosopher, matter is composed of small and indivisible particles called atoms. He introduced atoms as too small to be seen, unchangeable, completely solid without internal structure. He proposed that atoms are of variety of shapes and sizes which is responsible for different types of matter.
But according to Dalton’s atomic theory, chemical elements have atoms, which are identical in weight. The different elements have different atoms of different weight. Atoms can combine in whole-number ratios to form compounds. These observations are already introduced by Greek philosopher, but the idea of atomic weight is introduced by Dalton. He introduced the list of 21 elements with their atomic weights and, he was the first to propose the element’s symbol.
Answer:
4 NH3 (g) + 5 O2 (g) → 4 NO (g) + 6 H2O (l)
Explanation:
This is an oxidation-reduction (redox) reaction:
4 N-III - 20 e- → 4 NII
(oxidation)
10 O0 + 20 e- → 10 O-II
(reduction)
NH3 is a reducing agent, O2 is an oxidizing agent.
<h3>
Answer:</h3>
69.918 g
<h3>
Explanation:</h3>
<u>We are given;</u>
- Mass of iron oxide as 100 g
We are supposed to determine the maximum theoretical yield of Iron from the blast furnace;
- The equation for the reaction in the blast furnace that extracts Iron from iron oxide is given by;
Fe₂O₃ + 3CO → 2Fe + 3CO₂
- We can first determine moles of Iron oxide;
Moles = Mass ÷ Molar mass
Molar mass of Fe₂O₃ = 159.69 g/mol
Therefore;
Moles of Fe₂O₃ = 100 g ÷ 159.69 g/mol
= 0.626 moles
- Then we determine moles of Iron produced
From the equation;
1 mole of Fe₂O₃ reacts to produce 2 moles of Fe
Therefore;
Moles of Fe = Moles of Fe₂O₃ × 2
= 0.626 moles × 2
= 1.252 moles
- Maximum theoretical mass of Iron that can be obtained
Mass = Moles × molar mass
Molar mass of Fe = 55.845 g/mol
Therefore;
Mass of Fe = 1.252 moles × 55.845 g/mol
= 69.918 g
Therefore, the maximum theoretical mass of Iron metal obtained is 69.918 g