Answer:
Shortest carbon-nitrogen bond = CH3CN, strongest carbon-nitrogen bond = CH3CN
Explanation:
Bond length is defined as the distance between the centers of two covalently bonded atoms, in this case; carbon and hydrogen.
The length of the bond is determined by the number of bonded electrons (the bond order).
The higher the bond order, the stronger the pull between the two atoms and the shorter the bond length.
Therefore, bond length increases in the following order: triple bond < double bond < single bond.
CH3CN - There's a triple bond between Carbon and Nitrogen
CH3NH2 - The bond between carbon and nitrogen is a single bond.
CH2NH - The bond between carbon and nitrogen is a double bond.
The specie with the shortest carbon-nitrogen bond is CH3CN (acetonitrile).
The species with the strongest carbon-nitrogen bond is also CH3CN (acetonitrile) because it contains a triple bond. A triple bond contains one sigma and 2 pi bonds. The energy required to break it is more when compared to the other bonds hence, it is the strongest bond.
Answer:
K^+(aq) + Br^-(aq) -----> KBr(aq)
Explanation:
The net ionic equation shows the actual reaction that occurs in the system. The molecular reaction equation includes the spectator ions but the net ionic equation does not include the spectator ions.
Spectator ions do not participate in the main reaction going on in the system.
Hence, for the reaction of potassium hydroxide and ammonium bromide, we have;
K^+(aq) + Br^-(aq) -----> KBr(aq)
Answer:
69.4
Explanation:
There isn't one, I just took the test.
This problem is asking to predict the pressure in the container at a temperature of 1,135 K with no apparent background; however, in similar problems we can be given a graph having the pressure on the y-axis and the temperature on the x-axis and a trendline such as on the attached file, which leads to a pressure of 21.2 atm by using the given equation and considering the following:
<h3>Graph analysis.</h3>
In chemistry, experiments can be studied, modelled and quantified by using graphs in which we have both a dependent and independent variable; the former on the y-axis and the latter on the x-axis.
In addition, when data is recorded and graphed, one can use different computational tools to obtain a trendline and thus, attempt to find either the dependent or independent value depending on the requirement.
In this case, since the provided trendline by the graph and the program it was put in is y = 0.017x+1.940, we understand y stands for pressure and x for temperature so that we can extrapolate this equation even beyond the plotted points, which is this case.
In such a way, we can plug in the given temperature to obtain the required pressure as shown below:
y = 0.017 ( 1,135 ) + 1.940
y = 21.2
Answer that is in atm according to the units on the y-axis:
Learn more about trendlines: brainly.com/question/13298479