Arsenic
Arsenic has an atomic mass of 74.92, is a well known poison, and a metalloid.
Temperature is a measure of the energy of moving particles, so if the average kinetic energy is increasing, then the temperature would increase as well.
Answer:
518.52K
Explanation:
Charles law, which describes the direct relationship between the volume and the temperature of a gas when the pressure is constant, will be used for this question. The Charles law equation is:
V1/T1 = V2/T2
Where; V1 is the volume of the gas at an initial state (Litres)
T1 is the absolute temperature of the gas at an initial state (Kelvin)
V2 is the volume of the gas at a final state (Litres)
T2 is the absolute temperature of the gas at a final state (Kelvin)
According to the question, V1 = 2.3L, T1 = 25°C, V2 = 4L, T2 = ?
We need to convert the temperature to the absolute temperature unit in Kelvin (K) i.e.
T(K) = T(°C) + 273.15
T(K) = 25°C + 273.15
T1 (K) = 298.15K
To find for T2 in the equation, we make T2 the subject of the formula:
T2 = V2 × T1 / V1
T2 = 4 × 298.15 / 2.3
T2 = 1192.6/2.3
T2 = 518.52
Thus, the temperature must be heated to 518.52K in order to expand to a volume of 4L. This answer is in accordance to Charles law that the volume increases with increase in temperature and vice versa.
Controlled variables: do not change as they must be held constant
Independent variables: are controlled and manipulated
Dependent variables: effected by changes to the independent variable
These are three questions and three complete answers
Answer:
a) Cr²⁺: [Ar] 4s² 3d²
b) Cu²⁺: [Ar] 4s² 3d⁷
c) Co³⁺: [Ar] 4s² 3d⁴
Explanation:
<u>a) Cr²⁺</u>
- Number of elecrons of the neutral atom: 24
- Number of electrons of the ion: 24 - charge = 24 - 2 = 22.
Fill the orbitals in increasing order of energy. Using Aufbau's rules the order is: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ .....
Hence, for 22 electrons you get:
1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d²
- Abbreviated notation: since the last complete level is the number 3s² 3p⁶, you use the noble gas of the period 3, which is Ar, and the configuration is:
[Ar] 4s² 3d²
<u>b) Cu²⁺</u>
- Number of elecrons of the neutral atom: 29
- Number of electrons of the ion: 29 - charge = 29 - 2 = 27.
Fill the orbitals in increasing order of energy. Using Aufbau's rules the order is: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ .....
Hence, for 27 electrons you get:
1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁷
- Abbreviated notation: since the last complete level is the number 3s² 3p⁶, you use the noble gas of the period 3, which is Ar, and the configuration is:
[Ar] 4s² 3d⁷
<u>c) Co³⁺</u>
- Number of elecrons of the neutral atom: 27
- Number of electrons of the ion: 27 - charge = 27 - 3 = 24.
Fill the orbitals in increasing order of energy. Using Aufbau's rules the order is: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ .....
Hence, for 24 electrons you get:
1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁴
- Abbreviated notation: since the last complete level is the number 3s² 3p⁶, you use the noble gas of the period 3, which is Ar, and the configuration is:
[Ar] 4s² 3d⁴