Answer:
y = 3 - x + x²
Step-by-step explanation:
Given the data:
x. y
-5 33
-2 9
-1 5
0 3
3 9
4 15
6 33
General formof a quadratic model:
y = A + Bx + Cx²
Using the quadratic regression model solver for the data Given:
The quadratic model fit obtained is :
y = 3 - x + x²
Answer:
(-2, -4.5)
Step-by-step explanation:
Answer:
C
Step-by-step explanation:
If the parent function is function
and
then
- the graph of the function
is translated a units to the right graph of the parent function; - the graph of the function
is translated a units to the left graph of the parent function; - the graph of the function
is translated a units up graph of the parent function; - the graph of the function
is translated a units down graph of the parent function.
In your case, the grapgh of the function
is translated 2 units up the graph of the function 
Answer:
f(g(9)) = 945/16
Step-by-step explanation:
To find f(g(x)), you have to substitute g(x) wherever there is an x in f(x).
g(x) = x + 3/4
f(x) = x² - 4x - 3
f(g(x)) = (x + 3/4)² - 4(x + 3/4) - 3
f(g(x)) = x² + 3/2x + 9/16 - 4x + 3 - 3
f(g(x)) = x² - 5/2x + 9/16 + 3 - 3
f(g(x)) = x² - 5/2x + 9/16
Now, put a 9 wherever there is an x in f(g(x)).
f(g(9)) = (9)² - 5/2(9) + 9/16
f(g(9)) = 81 - 5/2(9) + 9/16
f(g(9)) = 81 - 45/2 + 9/16
f(g(9)) = 117/2 + 9/16
f(g(9)) = 945/16