Answer:
82.416 g of KNO
₃ is needed to produce 510.0 mL of a 1.6 M KNO
₃ solution.
Explanation:
Since molarity is the number of moles of solute that are dissolved in a given volume, calculated by dividing the moles of solute by the volume of the solution, the following rule of three can be applied: if in 1 L (1,000 mL) of KNO₃ there are 1.6 moles of the compound present, in 510 mL how many moles will there be?

moles= 0.816
Being the molar mass of the elements:
- K: 39 g/mole
- N: 14 g/mole
- O: 16 g/mole
So the molar mass of the compound KNO₃ is:
KNO₃= 39 g/mole + 14 g/mole + 3*16 g/mole= 101 g/mole
Now I can apply the following rule of three: if in 1 mole of KNO₃ there are 101 g, in 0.816 moles how much mass is there?

mass= 82.416 grams
<u><em>82.416 g of KNO
₃ is needed to produce 510.0 mL of a 1.6 M KNO
₃ solution.</em></u>
I think the answer you have selected is right, I'm not sure tho
It uses elimination againLet A be 15% juice and B is 5% juice
A+B = 100.15A + 0.05B = 0.11*10 = 1.1Multiply 2nd equation by 100 to get rid of decimals
A+B = 1015A + 5B = 110
Answer:
The boiling point elevation is 3.53 °C
Explanation:
∆Tb = Kb × m
∆Tb is the boiling point elevation of the solution
Kb is the molal boiling point elevation constant of CCl4 = 5.03 °C/m
m is the molality of the solution is given by moles of solute (C9H8O) divided by mass of solvent (CCl4) in kilogram
Moles of solute = mass/MW =
mass = 92.7 mg = 92.7/1000 = 0.0927 g
MW = 132 g/mol
Moles of solute = 0.0927/132 = 7.02×10^-4 mol
Mass of solvent = 1 g = 1/1000 = 0.001 kg
m = 7.02×10^-4 mol ÷ 0.001 kg = 0.702 mol/kg
∆Tb = 5.03 × 0.702 = 3.53 °C (to 2 decimal places)
Answer:
46g of sodium acetate.
Explanation:
The data is: <em>Precipitation from a supersaturated sodium acetate solution. The solution on the left was formed by dissolving 156g of the salt in 100 mL of water at 100°C and then slowly cooling it to 20°C. Because the solubility of sodium acetate in water at 20°C is 46g per 100mL of water, the solution is supersaturated. Addition of a sodium acetate crystal causes the excess solute to crystallize from solution.</em>
The third solution is the result of the equilibrium in the solution at 20°C. As the maximum quantity that water can dissolve of sodium acetate at this temperature is 46g per 100mL and the solution has 100mL <em>there are 46g of sodium acetate in solution. </em>The other sodium acetate precipitate because of decreasing of temperature.
I hope it helps!