Answer:
B. is your correct answer
Explanation:
Answer : The correct option is, (C) 1.1
Solution : Given,
Initial moles of
= 1.0 mole
Initial volume of solution = 1.0 L
First we have to calculate the concentration
.


The given equilibrium reaction is,

Initially c 0
At equilibrium

The expression of
will be,
![K_c=\frac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)

where,
= degree of dissociation = 40 % = 0.4
Now put all the given values in the above expression, we get:



Therefore, the value of equilibrium constant for this reaction is, 1.1
Answer:
the type is single replacement
The correct answer is the atomic radius increase because of the higher number of occupied energy levels.
Atomic radius increases when going down a group. The valence electrons hold the higher levels because of the enhancing quantum number (n). As a consequence, the valence electrons get further away from the nucleus with the increase in n. The electron shielding inhibits these outer electrons from getting fascinated towards the nucleus. Therefore, they are held, and the resulting atomic radius is greater.
Answer:
The answer to your question is Na₂S, if you need to choices the other one is BaS
Explanation:
As a general rule, all the compounds that have sulfur, are insoluble in water, but the are some exceptions.
-Molecules with ammonia
-If the molecule has alkali metals is soluble
-If the molecule has Ca⁺², Sr⁺² and Ba⁺² is soluble in water.
From the compounds given, following the rules, the compound that is soluble in is Na₂S and perhaps BaS.