1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vova2212 [387]
3 years ago
7

6.) What is the sum of 3x² + x+8 and x? - 9 ?

Mathematics
1 answer:
Dennis_Churaev [7]3 years ago
5 0

Step-by-step explanation:

= (3x² + x + 8) + (x² - 9)

= (3 + 1)x² + x + (8 - 9)

= 4x² + x - 1

You might be interested in
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
Solve the following inequality l x - 5 l &gt; 25
svetoff [14.1K]
 <span>Simplify both sides of the inequality.

x-5>25

</span><span> Add 5 to both sides.
</span>
x-5+5>25+5

x>30
8 0
3 years ago
Caroline's hair is
Ipatiy [6.2K]

The inequality can be used to determine how many months will it take for Caroline's hair to be at least as long as Trinity's hair is (1/5)x + 7 ≥ (1/10)x + 10

<h3>What is an equation? </h3>

An equation is an expression that shows the relationship between two or more numbers and variables. An independent variable is a variable that does not depend on other variables while a dependent variable is a variable that depends on other variables.

Let x represent the number of months.

For Caroline's hair:

Length = (1/5)x + 7

For Trinity's hair:

Length = (1/10)x + 10

For Caroline's hair to be at least as long as Trinity's hair, hence:

(1/5)x + 7 ≥ (1/10)x + 10

The inequality can be used to determine how many months will it take for Caroline's hair to be at least as long as Trinity's hair is (1/5)x + 7 ≥ (1/10)x + 10

Find out more on equation at: brainly.com/question/2972832

#SPJ1

8 0
2 years ago
X &lt; 4 and x &gt; -3: I need this in interval notation please.
maksim [4K]

x > -3 and x < 4

in interval notation

x\in(-3,\ 4)

>; < - a open circle on the number line and the parenthesis ( or )

≥; ≤ - a filled-in circle on the number line and the parenthesis  [ or ]

8 0
3 years ago
One cylinder has a volume that is 8 Centimeters cubed less than StartFraction 7 over 8 EndFraction of the volume of a second cyl
mojhsa [17]

The correct equation is:

216 = \frac{7}{8} \times x - 8

The volume of second cylinder is 256 centimeter cubed

<em><u>Solution:</u></em>

Given that,

One cylinder has a volume that is 8cm less than 7/8 of the volume of a second cylinder

The first cylinder’s volume is 216 centimeter cubed

From given,

Let "x" be the volume of second cylinder

Therefore,

Volume of first cylinder = 7/8 of the volume of a second cylinder - 8

216 = \frac{7}{8} \times x - 8

216 = \frac{7x}{8}-8\\\\216 = \frac{7x-64}{8}\\\\7x - 64 = 8 \times 216\\\\7x - 64 = 1728\\\\7x = 1728 + 64\\\\7x = 1792\\\\Divide\ both\ sides\ by\ 7\\\\x = 256

Thus the volume of second cylinder is 256 centimeter cubed

6 0
3 years ago
Read 2 more answers
Other questions:
  • The city of Atlanta recently increased their sales tax from 7.5% to 8%. How much more tax would you pay on a $10 purchase?
    9·2 answers
  • What is 304,001 in expanded form
    6·1 answer
  • Help pleaseeeeeeeeeeeeeeeeeeeeeeeeeee
    6·1 answer
  • solve for the polynomial equation by factoring, then using the zero product principle. This is just the example problem Please e
    13·1 answer
  • How can revolving debt change from short term debt to long term debt?
    12·2 answers
  • 11. A(-2,1), B(2,5), C(5,1) (round answers to the nearest tenth)
    15·1 answer
  • Mindy has a 20-year adjustable rate mortgage with a rate of 3.6% for the first 4 years. The monthly payment is $1,375.01. The am
    14·1 answer
  • A builder is finishing a new vet clinic and wants to install a drip edge along the roof. The edging he has decided to use comes
    8·1 answer
  • 38. Which equation represents the data in<br> the table?
    6·2 answers
  • 38 5th graders at Vernon elementary are going on the field trip to the art museum. They are riding in vans that are nine student
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!