Answer:
be the second player, and always leave a multiple of 3 balloons
Step-by-step explanation:
In order to win, a player must force the other player to leave one or two balloons. To do that, the winning player must leave one more balloon than the maximum number that can be popped. That is, the winner will be the player who leaves 3 balloons,
Working backward, we find that the winner must leave a multiple of 3 after each turn. Since the starting number is a multiple of 3, the first player must lose if the second player plays optimally.
The winning strategy is ...
- be the second player
- always leave a multiple of 3 balloons.
Answer:
First, do 15/12 then take that and divide by 500!
Step-by-step explanation:
Answer:
25 ft
Step-by-step explanation:
2cm+2cm=20ft
1cm=5ft
Part A;
There are many system of inequalities that can be created such that only contain points D and E in the overlapping shaded regions.
Any system of inequalities which is satisfied by (-4, 2) and (-1, 5) but is not satisfied by (1, 3), (3, 1), (3, -3) and (-3, -3) can serve.
An example of such system of equation is
x < 0
y > 0
The system of equation above represent all the points in the second quadrant of the coordinate system.The area above the x-axis and to the left of the y-axis is shaded.
Part B:It can be verified that points D and E are solutions to the system of inequalities above by substituting the coordinates of points D and E into the system of equations and see whether they are true.
Substituting D(-4, 2) into the system
we have:
-4 < 0
2 > 0
as can be seen the two inequalities above are true, hence point D is a solution to the set of inequalities.
Also, substituting E(-1, 5) into the system we have:
-1 < 0
5 > 0
as can be seen the two inequalities above are true, hence point E is a solution to the set of inequalities.
Part C:Given that chicken can only be raised in the area defined by y > 3x - 4.
To identify the farms in which chicken can be raised, we substitute the coordinates of the points A to F into the inequality defining chicken's area.
For point A(1, 3): 3 > 3(1) - 4 ⇒ 3 > 3 - 4 ⇒ 3 > -1 which is true
For point B(3, 1): 1 > 3(3) - 4 ⇒ 1 > 9 - 4 ⇒ 1 > 5 which is false
For point C(3, -3): -3 > 3(3) - 4 ⇒ -3 > 9 - 4 ⇒ -3 > 5 which is false
For point D(-4, 2): 2 > 3(-4) - 4; 2 > -12 - 4 ⇒ 2 > -16 which is true
For point E(-1, 5): 5 > 3(-1) - 4 ⇒ 5 > -3 - 4 ⇒ 5 > -7 which is true
For point F(-3, -3): -3 > 3(-3) - 4 ⇒ -3 > -9 - 4 ⇒ -3 > -13 which is true
Therefore, the farms in which chicken can be raised are the farms at point A, D, E and F.