Many when you solve it it works out perfectly.
Answer:
The instantaneous velocity at
is
.
Step-by-step explanation:
We have the position as the function

As we know that the velocity is the rate of change of position over time, so it is basically the derivative of the function.
so finding the derivate of 
∴ 
The instantaneous velocity at 

Therefore, the instantaneous velocity at
is
.
Please note that the negative value indicates the direction of movement, in this case, it would be backward.
Answer:
Solution: x = -2; y = 3 or (-2, 3)
Step-by-step explanation:
<u>Equation 1:</u> y = -5x - 7
<u>Equation 2:</u> -4x - 3y = -1
Substitute the value of y in Equation 1 into the Equation 2:
-4x - 3(-5x - 7) = -1
-4x +15x + 21 = -1
Combine like terms:
11x + 21 = - 1
Subtract 21 from both sides:
11x + 21 - 21 = - 1 - 21
11x = -22
Divide both sides by 11 to solve for x:
11x/11 = -22/11
x = -2
Now that we have the value for x, substitute x = 2 into Equation 2 to solve for y:
-4x - 3y = -1
-4(-2) - 3y = -1
8 - 3y = -1
Subtract 8 from both sides:
8 - 8 - 3y = -1 - 8
-3y = -9
Divide both sides by -3 to solve for y:
-3y/-3 = -9/-3
y = 3
Therefore, the solution to the given systems of linear equations is:
x = -2; y = 3 or (-2, 3)
Please mark my answers as the Brainliest if you find this helpful :)
Answer:
Step-by-step explanation:
The 6x^2 because 6 is not a perfect square.
ANSWER: 7.53
Step-by-step explanation:
To convert a percent to decimal you need to divide the percent by 1,
753% ÷ 1 = 7.53