The correct answer is
.
<h3>Organometallic reagent</h3>
Organometallic chemistry is the study of organometallic compounds, which are substances that contain at least one chemical bond between a carbon atom from an organic molecule and a metal. These substances include alkali, alkaline earth, and transition metals, as well as metalloids like boron, silicon, and selenium. In addition to links to organyl fragments or molecules, bonds to 'inorganic' carbon, such as those to carbon monoxide (metal carbonyls), cyanide, or carbide, are also typically regarded as organometallic. Although they are not strictly speaking organometallic compounds, some similar compounds, such as transition metal hydrides and metal phosphine complexes, are frequently included in discussions of such substances. The phrase "metalorganic compound," which is comparable but different, describes molecules that contain metals but do not have direct metal-carbon bonds but do have organic ligands.
Learn more about organometallic reagent here:
brainly.com/question/13299409
#SPJ4
Answer:
NO would form 65.7 g.
H₂O would form 59.13 g.
Explanation:
Given data:
Moles of NH₃ = 2.19
Moles of O₂ = 4.93
Mass of NO produced = ?
Mass of produced H₂O = ?
Solution:
First of all we will write the balance chemical equation,
4NH₃ + 5O₂ → 4NO + 6H₂O
Now we will compare the moles of NO and H₂O with ammonia from balanced chemical equation:
NH₃ : NO NH₃ : H₂O
4 : 4 4 : 6
2.19 : 2.19 2.19 : 6/4 × 2.19 = 3.285 mol
Now we will compare the moles of NO and H₂O with oxygen from balanced chemical equation:
O₂ : NO O₂ : H₂O
5 : 4 5 : 6
4.93 : 4/5×4.93 = 3.944 mol 4.93 : 6/5 × 4.93 = 5.916 mol
we can see that moles of water and nitrogen monoxide produced from the ammonia are less, so ammonia will be limiting reactant and will limit the product yield.
Mass of water = number of moles × molar mass
Mass of water = 3.285 mol × 18 g/mol
Mass of water = 59.13 g
Mass of nitrogen monoxide = number of moles × molar mass
Mass of nitrogen monoxide = 2.19 mol × 30 g/mol
Mass of nitrogen monoxide = 65.7 g
Answer:
The correct answer is 0.12 grams.
Explanation:
The mass of carbon monoxide or CO collected in the tube can be determined by using the ideal gas equation, that is, PV = nRT.
Based on the given question, P or the pressure of the gas is given as 1 atm, volume of the gas collected in the tube is 117 ml or 0.117 L.
The number of moles or n can be determined by using the equation, mass/molar mass.
R is the universal gas constant, whose value is 0.0821 L atmK^-1mol^-1, and temperature is 55 degree C or 328 K (55+273).
On putting the values we get:
n = PV/RT
= (1 atm*0.117 L) / (0.0821 L atmK^-1mol^-1 * 328 K)
= 0.0043447 mol
Therefore, mass of CO will be moles * molar mass of CO
= 0.0043447 mol * 28 g/mol
= 0.12 g
To determine mass of the given number of atoms of mercury, we need a factor that would relate the number of atoms to number of moles. In this case, we use the Avogadro's number. It is a <span>number that represents the
number of units in one mole of any substance. This has the value of 6.022 x
10^23 units / mole. The number of units could be atoms, molecules, ions or electrons. To convert into mass, we use the given amu of mercury since it is equal to grams per mole. We calculate as follows:
</span>3.0 x 10^10 atoms ( 1 mol / 6.022 x 10^23 atoms ) ( 200.59 g / 1 mol ) = 9.99x10^-12 g Hg
Answer:
Answers are explained below
Explanation:
(a)
Oxidation number of iron :
FeO = +2
Fe2O3= +3
Fe3O4 = +2 and +3 since Fe3O4 is the mixture of FeO and Fe2O3.
(b) FeO + CO ----> Fe (s) + CO2
(c) In a pure iron metallic bond is exist between the particles of Fe. But in the form of ore metals forms ionic bond with the non-metals.
Hence the properties vary.
Yes carbon steel has greater strength than that of pure iron but retains the property of iron because no chemical reaction occurs between carbon and iron.
d)
Mixing of carbon in iron is a type of physical change since there is no chemical reactions occur between the carbon and iron. Carbon atoms diffuses in the place between the iron atoms.
(f) One of the property of non-metals are brittleness. It is non ductile .
So when the percentage of carbon increases its atoms also occupying more and more free places.
And increasing the brittleness. So the iron becomes less ductile.
e)