Each enzyme's active site is suitable for one specific type of substrate – just like a lock that has the right shape for only one specific key. Changing the shape of the active site of an enzyme will cause its reaction to slow down until the shape has changed so much that the substrate no longer fits.
Answer:
Phase changes that require a loss in energy are condensation and freezing.
Explanation:
<span>NO2 weighs 46.005 grams per mol. There are 6.02x10^23 molecules in a mol. In the given sample of 189.5 grams, there are 4.12 mols. This means that there are 2.48x10^24 molecules of NO2 in the given sample.</span>
Bb, or mostly dominant with a little recessive
Answer:
5.45*10⁻⁴ moles of silane gas (SiH₄) are present in 8.68 mL measured at 18°C and 1.50 atm.
Explanation:
An ideal gas is a theoretical gas that is considered to be composed of point particles that move randomly and do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P * V = n * R * T
In this case:
- P= 1.5 atm
- V= 8.68 mL= 0.00868 L (being 1000 mL= 1 L)
- n= ?
- R= 0.082

- T= 18 C= 291 K (being 0 C= 273 K)
Replacing:
1.5 atm* 0.00868 L= n* 0.082
*291 K
Solving:

n= 5.45*10⁻⁴ moles
<u><em>5.45*10⁻⁴ moles of silane gas (SiH₄) are present in 8.68 mL measured at 18°C and 1.50 atm.</em></u>