Answer:
1837.65 mmHg is the pressure in millimeters of mercury.
Explanation:
The expression for the conversion of Pressure (kPa) to pressure (mmHg) is shown below as:-
Pressure (kPa) = 7.501 x Pressure (mmHg)
The pressure value given = 245 kPa
It can be expressed in millimeters of mercury as:-
Pressure = 7.501 x 245 mmHg = 1837.65 mmHg
<u>1837.65 mmHg is the pressure in millimeters of mercury.</u>
Explanation:
The given reaction will be as follows.
............. (1)
= ![[Ag^{+}][Cl^{-}] = 1.8 \times 10^{-10}](https://tex.z-dn.net/?f=%5BAg%5E%7B%2B%7D%5D%5BCl%5E%7B-%7D%5D%20%3D%201.8%20%5Ctimes%2010%5E%7B-10%7D)
Reaction for the complex formation is as follows.
........... (2)
= ![\frac{[Ag(NH_{3})_{2}]}{[Ag^{+}][NH_{3}]^{2}} = 1.0 \times 10^{8}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BAg%28NH_%7B3%7D%29_%7B2%7D%5D%7D%7B%5BAg%5E%7B%2B%7D%5D%5BNH_%7B3%7D%5D%5E%7B2%7D%7D%20%3D%201.0%20%5Ctimes%2010%5E%7B8%7D)
When we add both equations (1) and (2) then the resultant equation is as follows.
............. (3)
Therefore, equilibrium constant will be as follows.
K = 
= 
= 
Since, we need 0.010 mol of AgCl to be soluble in 1 liter of solution after after addition of
for complexation. This means we have to set
=
= 
= 0.010 M
For the net reaction, ![AgCl(s) + 2NH_{3}(aq) \rightarrow [Ag(NH_{3})_{2}]^{+}(aq) + Cl^{-}(aq)](https://tex.z-dn.net/?f=AgCl%28s%29%20%2B%202NH_%7B3%7D%28aq%29%20%5Crightarrow%20%5BAg%28NH_%7B3%7D%29_%7B2%7D%5D%5E%7B%2B%7D%28aq%29%20%2B%20Cl%5E%7B-%7D%28aq%29)
Initial : 0.010 x 0 0
Change : -0.010 -0.020 +0.010 +0.010
Equilibrium : 0 x - 0.020 0.010 0.010
Hence, the equilibrium constant expression for this is as follows.
K = ![\frac{[Ag(NH_{3})^{+}_{2}][Cl^{-}]}{[NH_{3}]^{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BAg%28NH_%7B3%7D%29%5E%7B%2B%7D_%7B2%7D%5D%5BCl%5E%7B-%7D%5D%7D%7B%5BNH_%7B3%7D%5D%5E%7B2%7D%7D)
= 
x = 0.0945 mol
or, x = 0.095 mol (approx)
Thus, we can conclude that the number of moles of
needed to be added is 0.095 mol.
Types of rocks: Igneous, sedimentary, and metamorphic
There are over 200 names of minerals, I'm not sure what you want for that
Preparing 15 mg/gl working standard solution from a 20 mg/dl stock solution will require the application of the dilution principle.
Recalling the principle:
initial volume x initial molarity = final volume x final molarity
Since we were not given any volume to work with, we can as well just take an arbitrary volume to be prepared. Let's assume that the stock solution is 10 mL and we want to prepare 15 mg/gl from it:
Applying the dilution principle:
10 x 20 = final volume x 15
final volume = 200/15
= 13.33 mL
This means that in order to prepare 13.33 mL, 15 mg/l working standard solution from 10 ml, 20 mg/dl stock solution, 3.33 mL of the diluent must be added to the stock solution.
More on dilution principle can be found here: brainly.com/question/11493179
Answer:
The right response is "6 A". A further explanation is given below.
Explanation:
The given values are:
Resistance,
R = 6 ohms
Voltage,
V = 36 volts
As we know,
⇒ 
then,
⇒ 
On substituting the values, we get
⇒ 
⇒ 