<span>1 and 2/3 time 1 and 1/3 is 2.22222222222 which rounds to 2.</span>
Exterior angle = 180 - 144 = 36 degrees
Number of sides = 360 / 36 = 10 sides (answer)
• So we know that.....
x represent bags of snack and y is bottles of water.
This equations shows the total amount and the cost of each water bottle and snack:
20.00 = 2.50x + 1.00y
Total: $20.00
Snack: $2.50
Water Bottle: $1.00
And this question shows the total items:
11 = x + y
Which there will be some snack + some water bottle = 11 items
—————————————————————
• Now I’m going to first solve for x, which is the amount of bags of snack.
I will use the equation, 11 = x + y.
(First, we’ll subtract y from both side, since we’re solving for x [UNDO])
11 = x + y
-y = - y
_______
11 - y = x —> so x is equal to 11 minus y.
—————————————————————
• Now we’re going to plug the 11 - y as x in the equation: 20.00 = 2.50x + 1.00y to solve for y.
20.00 = 2.50 (11 - y) + 1.00y
20.00 = 27.5 - 2.50y + 1.00y (Distributed)
20.00 = 27.5 - 1.50y (Combine like terms)
20.00 = 27.5 - 1.50y
-27.5 = -27.5 (Subtract -27.5 both side)
——————————
-7.5 = - 1.50y
-7.5 = -1.50y
—— ——— (Divide both side by -1.50)
- 1.50 = -1.50
5 = y
y is equals to 5, which means that there are 5 water bottles.
Now we know there are 11 items total and because there are 5 water bottles, there will be 6 bags of snacks. 11-5=6
—————————————————————
ANSWER:
They bought 6 bags of snacks! :)
Answer:
second difference
Step-by-step explanation:
The differences of the y-values will differ by a common amount.
<u>Example</u>:
y = x^2 for x = 2, 4, 6, 8
y-values are 4, 16, 36, 64
differences of these are 12, 20, 28
differences of these differences are 8 and 8, a common value.
This is quite a complex problem. I wrote out a really nice solution but I can't work out how to put it on the website as the app is very poorly made. Still, I'll just have to type it all in...
Okay so you need to use a technique called logarithmic differentiation. It seems quite unnatural to start with but the result is very impressive.
Let y = (x+8)^(3x)
Take the natural log of both sides:
ln(y) = ln((x+8)^(3x))
By laws of logarithms, this can be rearranged:
ln(y) = 3xln(x+8)
Next, differentiate both sides. By implicit differentiation:
d/dx(ln(y)) = 1/y dy/dx
The right hand side is harder to differentiate. Using the substitution u = 3x and v = ln(x+8):
d/dx(3xln(x+8)) = d/dx(uv)
du/dx = 3
Finding dv/dx is harder, and involves the chain rule. Let a = x+ 8:
v = ln(a)
da/dx = 1
dv/da = 1/a
By chain rule:
dv/dx = dv/da * da/dx = 1/a = 1/(x+8)
Finally, use the product rule:
d/dx(uv) = u * dv/dx + v * du/dx = 3x/(x+8) + 3ln(x+8)
This overall produces the equation:
1/y * dy/dx = 3x/(x+8) + 3ln(x+8)
We want to solve for dy/dx, achievable by multiplying both sides by y:
dy/dx = y(3x/(x+8) + 3ln(x+8))
Since we know y = (x+8)^(3x):
dy/dx = ((x+8)^(3x))(3x/(x+8) + 3ln(x+8))
Neatening this up a bit, we factorise out 3/(x+8):
dy/dx = (3(x+8)^(3x-1))(x + (x+8)ln(x+8))
Well wasn't that a marathon? It's a nightmare typing that in, I hope you can follow all the steps.
I hope this helped you :)