Step-by-step explanation:
We are asked to simply (2√5 + 3√2)². Using formula: (a + b)² = a² + b² + 2ab. Let's say 2√5 = a, 3√2 = b. So,
→ (a + b)² = a² + b² + 2ab
→ (2√5 + 3√2)² = (2√5)² + (3√2)² + 2(2√5)(3√2)
We are aware about the fact that root means 1/2 and square of root means 2/2 that is 1. Using this we get:
→ (2√5 + 3√2)² = 4(5) + 9(2) + 2(2√5)(3√2)
Solve the brackets, to do so first put the like terms in one box.
→ (2√5 + 3√2)² = 4(5) + 9(2) + 2(2*3)(√5)(√2)
Solve the rest calculations.
→ (2√5 + 3√2)² = 20 + 18 + 2(6)(√10)
→ (2√5 + 3√2)² = 38 + 12√10
Option (a) (38 + 12√10) is the correct option.
Answer:
Here is my workk
Step-by-step explanation:
WORKKKKK
Answer:
x = ± 4
Step-by-step explanation:
given 3x² = 48 ( divide both sides by 3 )
x² = 16 ( take the square root of both sides )
x = ±
= ± 4
x ∈ {- 4, 4 }
Answer:
M-N= {a,d}
Step-by-step explanation:
subtract the common elements
I think that this is a combination problem. From the given, the 8 students are taken 3 at a time. This can be solved through using the formula of combination which is C(n,r) = n!/(n-r)!r!. In this case, n is 8 while r is 3. Hence, upon substitution of the values, we have
C(8,3) = 8!/(8-3)!3!
C(8,3) = 56
There are 56 3-person teams that can be formed from the 8 students.