The length of a curve <em>C</em> parameterized by a vector function <em>r</em><em>(t)</em> = <em>x(t)</em> i + <em>y(t)</em> j over an interval <em>a</em> ≤ <em>t</em> ≤ <em>b</em> is

In this case, we have
<em>x(t)</em> = exp(<em>t</em> ) + exp(-<em>t</em> ) ==> d<em>x</em>/d<em>t</em> = exp(<em>t</em> ) - exp(-<em>t</em> )
<em>y(t)</em> = 5 - 2<em>t</em> ==> d<em>y</em>/d<em>t</em> = -2
and [<em>a</em>, <em>b</em>] = [0, 2]. The length of the curve is then





Answer:
f(g(5)) = 16.5
Step-by-step explanation:
To calculate f(g(5)), evaluate g(5) then substitute the value obtained into f(x)
g(5) =
× 5 = 2.5 , then
f(2.5) = 5(2.5) + 4 = 12.5 + 4 = 16.5
Answer:
The experimental probability of the outcome is 1/4
Step-by-step explanation:
-kitkat- i am going to say that every time lol
Answer:
Option (2)
Step-by-step explanation:
Given expression is, AX + B = C



AX + B = C
AX = C - B
C - B =
= 
C - B = 
Let 
AX =
= 
Since AX = C - B

Therefore, a = 1, b = 5
(-3a - 4c) = -35
3(1) + 4c = 35
3 + 4c = 35
4c = 32
c = 8
And (-3b - 4d) = -11
3(5) + 4d = 11
4d = -4
d = -1
Therefore, Option (2). X =
will be the answer.
Answer:
the answer is 800in
Step-by-step explanation: