1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kramer
2 years ago
10

Pleaseeeee ı dont find the answer

Mathematics
1 answer:
mote1985 [20]2 years ago
3 0

Answer:  y(x) = \sqrt{\frac{7x^{14}}{-2x^7+9}}\\\\

==========================================================

Explanation:

The given differential equation (DE) is

y'-\frac{7}{x}y = \frac{y^3}{x^8}\\\\

Which is the same as

y'-\frac{7}{x}y = \frac{1}{x^8}y^3\\\\

This 2nd DE is in the form y' + P(x)y = Q(x)y^n

where

P(x) = -\frac{7}{x}\\\\Q(x) = \frac{1}{x^8}\\\\n = 3

As the instructions state, we'll use the substitution u = y^{1-n}

We specifically use u = y^{1-n} = y^{1-3} = y^{-2}

-----------------

After making the substitution, we'll end up with this form

\frac{du}{dx} + (1-n)P(x)u = (1-n)Q(x)\\\\

Plugging in the items mentioned, we get:

\frac{du}{dx} + (1-n)P(x)u = (1-n)Q(x)\\\\\frac{du}{dx} + (1-3)*\frac{-7}{x}u = (1-3)\frac{1}{x^8}\\\\\frac{du}{dx} + \frac{14}{x}u = -\frac{2}{x^8}\\\\

We can see that we have a new P(x) and Q(x)

P(x) = \frac{14}{x}\\\\Q(x) = -\frac{2}{x^8}

-------------------

To solve the linear DE \frac{du}{dx} + \frac{14}{x}u = -\frac{2}{x^8}\\\\, we'll need the integrating factor which I'll call m

m(x) = e^{\int P(x) dx} = e^{\int \frac{14}{x}dx} = e^{14\ln(x)}

m(x) = e^{\ln(x^{14})} = x^{14}

We will multiply both sides of the linear DE by this m(x) integrating factor to help with further integration down the road.

\frac{du}{dx} + \frac{14}{x}u = -\frac{2}{x^8}\\\\m(x)*\left(\frac{du}{dx} + \frac{14}{x}u\right) = m(x)*\left(-\frac{2}{x^8}\right)\\\\x^{14}*\frac{du}{dx} + x^{14}*\frac{14}{x}u = x^{14}*\left(-\frac{2}{x^8}\right)\\\\x^{14}*\frac{du}{dx} + 14x^{13}*u = -2x^6\\\\\left(x^{14}*u\right)' = -2x^6\\\\

It might help to think of the product rule being done in reverse.

Now we can integrate both sides to solve for u

\left(x^{14}*u\right)' = -2x^6\\\\\displaystyle \int\left(x^{14}*u\right)'dx = \int -2x^6 dx\\\\\displaystyle x^{14}*u = \frac{-2x^7}{7}+C\\\\\displaystyle u = x^{-14}*\left(\frac{-2x^7}{7}+C\right)\\\\\displaystyle u = x^{-14}*\frac{-2x^7}{7}+Cx^{-14}\\\\\displaystyle u = \frac{-2x^{-7}}{7}+Cx^{-14}\\\\

u = \frac{-2}{7x^7} + \frac{C}{x^{14}}\\\\u = \frac{-2}{7x^7}*\frac{x^7}{x^7} + \frac{C}{x^{14}}*\frac{7}{7}\\\\u = \frac{-2x^7}{7x^{14}} + \frac{7C}{7x^{14}}\\\\u = \frac{-2x^7+7C}{7x^{14}}\\\\

Unfortunately, this isn't the last step. We still need to find y.

Recall that we found u = y^{-2}\\\\

So,

u = \frac{-2x^7+7C}{7x^{14}}\\\\y^{-2} = \frac{-2x^7+7C}{7x^{14}}\\\\y^{2} = \frac{7x^{14}}{-2x^7+7C}

We're told that y(1) = 1. This means plugging x = 1 leads to the output y = 1. So the RHS of the last equation should lead to 1. We'll plug x = 1 into that RHS, set the result equal to 1 and solve for C

\frac{7*1^{14}}{-2*1^7+7C} = 1\\\\\frac{7}{-2+7C} = 1\\\\7 = -2+7C\\\\7+2 = 7C\\\\7C = 9\\\\C = \frac{9}{7}

So,

y^{2} = \frac{7x^{14}}{-2x^7+7C}\\\\y^{2} = \frac{7x^{14}}{-2x^7+7*\frac{9}{7}}\\\\y^{2} = \frac{7x^{14}}{-2x^7+9}\\\\y = \sqrt{\frac{7x^{14}}{-2x^7+9}}\\\\

We go with the positive version of the root because y(1) is positive, which must mean y(x) is positive for all x in the domain.

You might be interested in
Whats 3,684,266 to the nearest hundred thousand and million
grin007 [14]
The nearest hundred thousand is 3,700,000
And the nearest million is 4,000,00
4 0
3 years ago
I need help plz !!!!
svetlana [45]
X = 66 or 180 - 114, which = 66
3 0
3 years ago
Simplify the square root of 6 * the square root of 8
Troyanec [42]

Answer:

Step-by-step explanation:

4√3

4 0
3 years ago
Read 2 more answers
Please help me! Thank you
Maru [420]

Step-by-step explanation:

5⁰= 1

2–3 means 1/2³

1/8

=0.125

8 0
2 years ago
Solve for x<br> Urgent need help
fiasKO [112]
I believe you need to solve this using the quadratic formula!
To begin, this is what it is:
x= -b ± <span>√ b^2 - 4ac / 2a
Just plug in what you have in your problem...
2 being a, 13 being b, and -24 being c.
So we get:
x= -13 </span>± <span>√13^2 - 4(2)(-24) / 2(2)
x= -13 </span><span>± √169 - 8 (-24) / 4</span>
<span>x= -13 <span>± √169 + 192 / 4</span>
x= -13 </span>± √<span>361 / 4
The square root of 361 is 19.
So you have: -13 </span><span>± 19 / 4.
Here's where you take the equation </span>-13 <span>± 19 and put the addition and subtraction sign to use.
-13 - 19 = -32
and
-13 + 19 = 6
Now all is left to do is divide the two numbers by 4.
-32/4 = -8
and
6/4 = 3/2

x = -8, 3/2</span>
6 0
3 years ago
Other questions:
  • What number is 4 times as many as 25
    12·1 answer
  • Quotient of 66 and 3
    8·1 answer
  • I need help this is due tonight
    6·1 answer
  • Find the area of the ring-the shaded region
    9·1 answer
  • The football coach is overseeing the installation of new goal posts on the football field. He is wondering if the goal posts are
    8·1 answer
  • Franchise Business Review stated over 50% of all food franchises earn a profit of less than $50,000 a year. In a sample of 130 c
    11·1 answer
  • Two numbers such that the greater number is 75 percent more than the lesser number
    9·1 answer
  • In a theme park the roller coaster is six times more popular than the big swingboat. How would you write this as a ratio?
    15·1 answer
  • I can't seem to figure this one out. Could someone show how to do it and the answer? Thanks in advance!
    7·1 answer
  • Omar's Response: The slopes and they
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!