1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kramer
2 years ago
10

Pleaseeeee ı dont find the answer

Mathematics
1 answer:
mote1985 [20]2 years ago
3 0

Answer:  y(x) = \sqrt{\frac{7x^{14}}{-2x^7+9}}\\\\

==========================================================

Explanation:

The given differential equation (DE) is

y'-\frac{7}{x}y = \frac{y^3}{x^8}\\\\

Which is the same as

y'-\frac{7}{x}y = \frac{1}{x^8}y^3\\\\

This 2nd DE is in the form y' + P(x)y = Q(x)y^n

where

P(x) = -\frac{7}{x}\\\\Q(x) = \frac{1}{x^8}\\\\n = 3

As the instructions state, we'll use the substitution u = y^{1-n}

We specifically use u = y^{1-n} = y^{1-3} = y^{-2}

-----------------

After making the substitution, we'll end up with this form

\frac{du}{dx} + (1-n)P(x)u = (1-n)Q(x)\\\\

Plugging in the items mentioned, we get:

\frac{du}{dx} + (1-n)P(x)u = (1-n)Q(x)\\\\\frac{du}{dx} + (1-3)*\frac{-7}{x}u = (1-3)\frac{1}{x^8}\\\\\frac{du}{dx} + \frac{14}{x}u = -\frac{2}{x^8}\\\\

We can see that we have a new P(x) and Q(x)

P(x) = \frac{14}{x}\\\\Q(x) = -\frac{2}{x^8}

-------------------

To solve the linear DE \frac{du}{dx} + \frac{14}{x}u = -\frac{2}{x^8}\\\\, we'll need the integrating factor which I'll call m

m(x) = e^{\int P(x) dx} = e^{\int \frac{14}{x}dx} = e^{14\ln(x)}

m(x) = e^{\ln(x^{14})} = x^{14}

We will multiply both sides of the linear DE by this m(x) integrating factor to help with further integration down the road.

\frac{du}{dx} + \frac{14}{x}u = -\frac{2}{x^8}\\\\m(x)*\left(\frac{du}{dx} + \frac{14}{x}u\right) = m(x)*\left(-\frac{2}{x^8}\right)\\\\x^{14}*\frac{du}{dx} + x^{14}*\frac{14}{x}u = x^{14}*\left(-\frac{2}{x^8}\right)\\\\x^{14}*\frac{du}{dx} + 14x^{13}*u = -2x^6\\\\\left(x^{14}*u\right)' = -2x^6\\\\

It might help to think of the product rule being done in reverse.

Now we can integrate both sides to solve for u

\left(x^{14}*u\right)' = -2x^6\\\\\displaystyle \int\left(x^{14}*u\right)'dx = \int -2x^6 dx\\\\\displaystyle x^{14}*u = \frac{-2x^7}{7}+C\\\\\displaystyle u = x^{-14}*\left(\frac{-2x^7}{7}+C\right)\\\\\displaystyle u = x^{-14}*\frac{-2x^7}{7}+Cx^{-14}\\\\\displaystyle u = \frac{-2x^{-7}}{7}+Cx^{-14}\\\\

u = \frac{-2}{7x^7} + \frac{C}{x^{14}}\\\\u = \frac{-2}{7x^7}*\frac{x^7}{x^7} + \frac{C}{x^{14}}*\frac{7}{7}\\\\u = \frac{-2x^7}{7x^{14}} + \frac{7C}{7x^{14}}\\\\u = \frac{-2x^7+7C}{7x^{14}}\\\\

Unfortunately, this isn't the last step. We still need to find y.

Recall that we found u = y^{-2}\\\\

So,

u = \frac{-2x^7+7C}{7x^{14}}\\\\y^{-2} = \frac{-2x^7+7C}{7x^{14}}\\\\y^{2} = \frac{7x^{14}}{-2x^7+7C}

We're told that y(1) = 1. This means plugging x = 1 leads to the output y = 1. So the RHS of the last equation should lead to 1. We'll plug x = 1 into that RHS, set the result equal to 1 and solve for C

\frac{7*1^{14}}{-2*1^7+7C} = 1\\\\\frac{7}{-2+7C} = 1\\\\7 = -2+7C\\\\7+2 = 7C\\\\7C = 9\\\\C = \frac{9}{7}

So,

y^{2} = \frac{7x^{14}}{-2x^7+7C}\\\\y^{2} = \frac{7x^{14}}{-2x^7+7*\frac{9}{7}}\\\\y^{2} = \frac{7x^{14}}{-2x^7+9}\\\\y = \sqrt{\frac{7x^{14}}{-2x^7+9}}\\\\

We go with the positive version of the root because y(1) is positive, which must mean y(x) is positive for all x in the domain.

You might be interested in
What is the rate of change from -1 to 4?
lana66690 [7]

Answer:

5

Step-by-step explanation:

-1+(1)= 0

0+(4)=4

1+4=5

5 0
3 years ago
I need someone who’s very smart
tino4ka555 [31]

The first one is in the hundredths place, and the second one is in the tenths place.

Hope this helps you! Happy Thanksgiving, here's a turkey!

3 0
3 years ago
Read 2 more answers
A baseball coach order hats for his team. Each hat cost $10. The shipping charger is $6. The total cost of the order must be les
NeTakaya
The answer should be:

10h + 6 < 125
3 0
3 years ago
Read 2 more answers
What is the domain of the function<br> y=^3 sqrt x-1
Anettt [7]

Answer:

The domain is all real numbers

3 0
3 years ago
Read 2 more answers
A class of 40 students has 11 honor students and 10 athletes. three of the honor students are also athletes. One student is chos
nadezda [96]
I do believe your answer would be a 
4 0
3 years ago
Other questions:
  • If a point is selected at random in the interior of a circle, find the probability that the point is closer to the center than t
    15·1 answer
  • Did I get it right it’s number 7
    14·2 answers
  • What is y=1/2x-3 on a graph
    12·2 answers
  • Is 4/5equivalent to 5/10
    11·2 answers
  • How do you rename 170,000
    7·1 answer
  • 4 teachers share 3 gallons of paint. How much paint does each teacher get?
    8·2 answers
  • How to write 513,292 in expanded notation
    5·1 answer
  • The filter system for the aquarium is a rectangular prism measuring 8 inches long, 8 inches wide and 15 inches high. What is the
    7·1 answer
  • What is the check digit(d) for the UPC bar code <br> 7-25272-73070-d<br> A)8<br> B)3<br> C)4<br> D)2
    7·1 answer
  • I WILL GIVE BRAINLY IF YOU ANSWER CORRECTLY AND NO LINKS
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!