Answer:
x=2
y=3
Solution:
First we find common denominators. It is "xy". Then we multiply numerators by common denominator. We get followings:
(4y-3x)/xy=1; (6y+15x)/xy=8
Then
4y-3x=xy;
6y+15=8xy
Multiply first equasion by 5
20y-15x=5xy
Now we add two equasions to get one
20y-15x=5xy
6y+15x=8xy
We get
26y=13xy
Cut "y" and we will find "x"
26=13x
x=2
Put x value into the first equasion(4y-3x=xy) to find out "y"
4y-6=2y
2y=6
y=3
Answer:
B
Step-by-step explanation:
x² + y² = 3 creates a circle and circles are not functions because one x-value relates to two y-values instead of one
Answer:
c.
Step-by-step explanation:
Answer:
R3 <= 0.083
Step-by-step explanation:
f(x)=xlnx,
The derivatives are as follows:
f'(x)=1+lnx,
f"(x)=1/x,
f"'(x)=-1/x²
f^(4)(x)=2/x³
Simialrly;
f(1) = 0,
f'(1) = 1,
f"(1) = 1,
f"'(1) = -1,
f^(4)(1) = 2
As such;
T1 = f(1) + f'(1)(x-1)
T1 = 0+1(x-1)
T1 = x - 1
T2 = f(1)+f'(1)(x-1)+f"(1)/2(x-1)^2
T2 = 0+1(x-1)+1(x-1)^2
T2 = x-1+(x²-2x+1)/2
T2 = x²/2 - 1/2
T3 = f(1)+f'(1)(x-1)+f"(1)/2(x-1)^2+f"'(1)/6(x-1)^3
T3 = 0+1(x-1)+1/2(x-1)^2-1/6(x-1)^3
T3 = 1/6 (-x^3 + 6 x^2 - 3 x - 2)
Thus, T1(2) = 2 - 1
T1(2) = 1
T2 (2) = 2²/2 - 1/2
T2 (2) = 3/2
T2 (2) = 1.5
T3(2) = 1/6 (-2^3 + 6 *2^2 - 3 *2 - 2)
T3(2) = 4/3
T3(2) = 1.333
Since;
f(2) = 2 × ln(2)
f(2) = 2×0.693147 =
f(2) = 1.386294
Since;
f(2) >T3; it is significant to posit that T3 is an underestimate of f(2).
Then; we have, R3 <= | f^(4)(c)/(4!)(x-1)^4 |,
Since;
f^(4)(x)=2/x^3, we have, |f^(4)(c)| <= 2
Finally;
R3 <= |2/(4!)(2-1)^4|
R3 <= | 2 / 24× 1 |
R3 <= 1/12
R3 <= 0.083
Answer:
y = x - 2
Step-by-step explanation:
You can subtract 4 from the x and y to get where the y-intercept would be.