Answer:
- 18x - 9 = 72
- 3(6x - 3) = 72
- x = 45
Step-by-step explanation:
Apply the distributed property:
- Apply the distributed property: 3/5 × 30x = 18x, 3/5 × 15 = 9
- Re-write the equation: 18x - 9 = 72
- 18x - 9 = 72 is an option listed, so that's one of the answers.
See the other options:
- Another option that looks like it could be the answer is 3(6x - 3) = 72
- Apply the distributed property like we did above, so it now looks like this: 18x - 9 = 72
- This is the same as what we got above, so it is also an answer.
Solve:
- Add 9 to each side, so it now looks like this: 18x = 81
- Divide each side by 18 to cancel out the 18 next to x. It should now look like this: x = 4.5
- x = 45 is an option listed, so that's one of the answers.
I hope this helps!
Answer:
any number less than 3
Step-by-step explanation:
Answer:
84/6=14. Each side is 14 because there are 6 sides to a hexagon.
Step-by-step explanation:
Answer: -14, -9, -8, -6, 10, 12, 13
Step-by-step explanation: Think of all the numbers money. The negative ones mean that you owe people money so the bigger the negative number is the more you owe people which is the less money you have.
By de Moivre's theorem,

![\implies \sqrt[4]{(1 - i)^2} = \sqrt[4]{2}\,e^{i(2\pi k-\pi/2)/4} = \sqrt[4]{2}\,e^{i(4k-1)\pi/8}](https://tex.z-dn.net/?f=%5Cimplies%20%5Csqrt%5B4%5D%7B%281%20-%20i%29%5E2%7D%20%3D%20%5Csqrt%5B4%5D%7B2%7D%5C%2Ce%5E%7Bi%282%5Cpi%20k-%5Cpi%2F2%29%2F4%7D%20%3D%20%5Csqrt%5B4%5D%7B2%7D%5C%2Ce%5E%7Bi%284k-1%29%5Cpi%2F8%7D)
where
. The fourth roots of
are then
![k = 0 \implies \sqrt[4]{2}\,e^{-i\pi/8}](https://tex.z-dn.net/?f=k%20%3D%200%20%5Cimplies%20%5Csqrt%5B4%5D%7B2%7D%5C%2Ce%5E%7B-i%5Cpi%2F8%7D)
![k = 1 \implies \sqrt[4]{2}\,e^{i3\pi/8}](https://tex.z-dn.net/?f=k%20%3D%201%20%5Cimplies%20%5Csqrt%5B4%5D%7B2%7D%5C%2Ce%5E%7Bi3%5Cpi%2F8%7D)
![k = 2 \implies \sqrt[4]{2}\,e^{i7\pi/8}](https://tex.z-dn.net/?f=k%20%3D%202%20%5Cimplies%20%5Csqrt%5B4%5D%7B2%7D%5C%2Ce%5E%7Bi7%5Cpi%2F8%7D)
![k = 3 \implies \sqrt[4]{2}\,e^{i11\pi/8}](https://tex.z-dn.net/?f=k%20%3D%203%20%5Cimplies%20%5Csqrt%5B4%5D%7B2%7D%5C%2Ce%5E%7Bi11%5Cpi%2F8%7D)
or more simply
![\boxed{\pm\sqrt[4]{2}\,e^{-i\pi/8} \text{ and } \pm\sqrt[4]{2}\,e^{i3\pi/8}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cpm%5Csqrt%5B4%5D%7B2%7D%5C%2Ce%5E%7B-i%5Cpi%2F8%7D%20%5Ctext%7B%20and%20%7D%20%5Cpm%5Csqrt%5B4%5D%7B2%7D%5C%2Ce%5E%7Bi3%5Cpi%2F8%7D%7D)
We can go on to put these in rectangular form. Recall


Then




and the roots are equivalently
![\boxed{\pm\sqrt[4]{2}\left(\sqrt{\dfrac12 + \dfrac1{2\sqrt2}} - i\sqrt{\dfrac12 - \dfrac1{2\sqrt2}}\right) \text{ and } \pm\sqrt[4]{2}\left(\sqrt{\dfrac12 + \dfrac1{2\sqrt2}} + i \sqrt{\dfrac12 - \dfrac1{2\sqrt2}}\right)}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cpm%5Csqrt%5B4%5D%7B2%7D%5Cleft%28%5Csqrt%7B%5Cdfrac12%20%2B%20%5Cdfrac1%7B2%5Csqrt2%7D%7D%20-%20i%5Csqrt%7B%5Cdfrac12%20-%20%5Cdfrac1%7B2%5Csqrt2%7D%7D%5Cright%29%20%5Ctext%7B%20and%20%7D%20%5Cpm%5Csqrt%5B4%5D%7B2%7D%5Cleft%28%5Csqrt%7B%5Cdfrac12%20%2B%20%5Cdfrac1%7B2%5Csqrt2%7D%7D%20%2B%20i%20%5Csqrt%7B%5Cdfrac12%20-%20%5Cdfrac1%7B2%5Csqrt2%7D%7D%5Cright%29%7D)