There is a multiple zero at 0 (which means that it touches there), and there are single zeros at -2 and 2 (which means that they cross). There is also 2 imaginary zeros at i and -i.
You can find this by factoring. Start by pulling out the greatest common factor, which in this case is -x^2.
-x^6 + 3x^4 + 4x^2
-x^2(x^4 - 3x^2 - 4)
Now we can factor the inside of the parenthesis. You do this by finding factors of the last number that add up to the middle number.
-x^2(x^4 - 3x^2 - 4)
-x^2(x^2 - 4)(x^2 + 1)
Now we can use the factors of two perfect squares rule to factor the middle parenthesis.
-x^2(x^2 - 4)(x^2 + 1)
-x^2(x - 2)(x + 2)(x^2 + 1)
We would also want to split the term in the front.
-x^2(x - 2)(x + 2)(x^2 + 1)
(x)(-x)(x - 2)(x + 2)(x^2 + 1)
Now we would set each portion equal to 0 and solve.
First root
x = 0 ---> no work needed
Second root
-x = 0 ---> divide by -1
x = 0
Third root
x - 2 = 0
x = 2
Forth root
x + 2 = 0
x = -2
Fifth and Sixth roots
x^2 + 1 = 0
x^2 = -1
x = +/- 
x = +/- i
The x-intercept of CD=18/5,0
Point lies on CD=32,-71
if there is figure add figure
C because you need to use the formula and then calculate
If the two triangles are similar you can use a proportion to solve for the length of the legs.

=

Now, you would cross multiply to get
4x=18
Now, you simplify that using the division property of equality.
You end up with
x=4.5
Therefore, the legs of the triangle with a base of 9 inches will each be 4.5 units long.