Answer:
not possible with info given
Step-by-step explanation:
Answer:
The correct option is O B'
Step-by-step explanation:
We have a quadrilateral with vertices A, B, C and D. A line of reflection is drawn so that A is 6 units away from the line, B is 4 units away from the line, C is 7 units away from the line and D is 9 units away from the line.
Now we perform the reflection and we obtain a new quadrilateral A'B'C'D'.
In order to apply the reflection to the original quadrilateral ABCD, we perform the reflection to all of its points, particularly to its vertices.
Wherever we have a point X and a line of reflection L and we perform the reflection, the new point X' will keep its original distance from the line of reflection (this is an important concept in order to understand the exercise).
I will attach a drawing with an example.
Finally, we only have to look at the vertices and its original distances to answer the question.
The vertice that is closest to the line of reflection is B (the distance is 4 units). We answer O B'
Answer:
use distance formula for the sides of the triangle
<em>Answer: h = 120 ft; w = 80 ft </em>
<em></em>
<em>A = 9600 ft^2</em>
<em />
<em>Step-by-step explanation: Let h and w be the dimensions of the playground. The area is given by:</em>
<em></em>
<em>A = h*w (eq1)</em>
<em></em>
<em>The total amount of fence used is:</em>
<em></em>
<em>L = 2*h + 2*w + w (eq2) (an extra distance w beacuse of the division)</em>
<em></em>
<em>Solving for w:</em>
<em></em>
<em>w = L - 2/3*h = 480 - 2/3*h (eq3) Replacing this into the area eq:</em>
<em></em>
<em></em>
<em></em>
<em>We derive this and equal zero to find its maximum:</em>
<em></em>
<em> Solving for h:</em>
<em></em>
<em>h = 120 ft. Replacing this into eq3:</em>
<em></em>
<em>w = 80ft</em>
<em></em>
<em>Therefore the maximum area is:</em>
<em></em>
<em>A = 9600 ft^2</em>
<em />