Answer: 480 kJ
Explanation: Energy = power · time
E = Pt = 4000 W · 120 s = 480 000 J
Answer: T = 472.71 N
Explanation: The wire vibrates thus making sound waves in the tube.
The frequency of sound wave on the string equals frequency of sound wave in the tube.
L= Length of wire = 26cm = 0.26m
u=linear density of wire = 20g/m = 0.02kg/m
Length of open close tube = 86cm = 0.86m
Sound waves in the tube are generated at the second vibrational mode, hence the relationship between the length of air and and wavelength is given as
L = 3λ/4
0.86 = 3λ/4
3λ = 4 * 0.86
3λ = 3.44
λ = 3.44/3 = 1.15m.
Speed of sound in the tube = 340 m/s
Hence to get frequency of sound, we use the formulae below.
v = fλ
340 = f * 1.15
f = 340/ 1.15
f = 295.65Hz.
f = 295.65 = frequency of sound wave in pipe = frequency of sound wave in string.
The string vibrated at it fundamental frequency hence the relationship the length of string and wavelength is given as
L = λ/2
0.26 = λ/2
λ = 0.52m
The speed of sound in string is given as v = fλ
Where λ = 0.52m f = 295.65 Hz
v = 295.65 * 0.52
v = 153.738 m/s.
The velocity of sound in the string is related to tension, linear density and tension is given below as
v = √(T/u)
153.738 = √T/ 0.02
By squaring both sides
153.738² = T / 0.02
T = 153.738² * 0.02
T = 23,635.372 * 0.02
T= 472.71 N
To solve this problem it is necessary to apply the concepts related to Faraday's law and the induced emf.
By definition the induced electromotive force is defined as


Where,
Electric field
B = Magnetic Field
A = Area
At the theory the magnetic field is defined as,

Where,
N = Number of loops
I = current
Permeability constant
We know also that the cross sectional area, is the area from a circle, and the length is equal to the perimeter then
A = \pi r^2
l = 2\pi r
Replacing at the previous equation we have that

Where,
R = Radius of the solenoid
r = The distance from the axis
Re-arrange to find the current in function of time,

Replacing our values we have


B is the correct answer, since all others are not true or are based on assumption
Answer: When you name an element, it's usually because the element is newly discovered. So by naming an element you are creating something that will last throughout history.
Explanation: