Refer to the figure shown below, which is based on the given figure.
d = the horizontal distance that the projectile travels.
h = the vertical distance that the projectile travels.
Part A
From the geometry, obtain
d = X cos(α) (1a)
h = X sin(α) (1b)
The vertical and horizontal components of the launch velocity are respectively
v = v₀ sin(θ - α) (2a)
u = v₀ cos(θ - α) (2b)
If the time of flight is t, then
vt - 0.5gt² = -h
or
0.5gt² - vt - h = 0 (3a)
ut = d (3b)
Substitute (1a), (1b), (2a), (2b) (3b) into (3a) to obtain
Hence obtain
The non-triial solution for X is
Answer:
Part B
v₀ = 20 m/s
θ = 53°
α = 36°
sinα + cosα tan(θ-α) = 0.8351
cosα/[v₀ cos(θ-α)] = 0.0423
X = 0.8351/(4.9*0.0423²) = 101.46 m
Answer: X = 101.5 m