1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
fenix001 [56]
3 years ago
11

= Homework: Section 9.6

Mathematics
1 answer:
MA_775_DIABLO [31]3 years ago
7 0

Answer:

here is an an example

Step-by-step explanation:

Let x = the width of the rectangle

P = 2l + 2w

2(40) + 2x ≤ 150

80 + 2x ≤ 150

2x ≤ 70

x ≤ 35 cm

You might be interested in
Danny’s 7 friends contributed an equal amount of money to buy him a birthday present. The present cost $84. How much money did e
dem82 [27]
84 divided by 7 equals 12
3 0
3 years ago
Find the value of x so that the function has the givin value<br><br> n(x)=2x+7, n(x)=17
Sunny_sXe [5.5K]

Answer: x=5

Step-by-step explanation:

Substitute 17 for n(x)

17=2x+7

Subtract 7 from both sides

10=2x

Divide each side by 2 to get the x by itself

x=5

6 0
3 years ago
Simplify u^2+3u/u^2-9<br> A.u/u-3, =/ -3, and u=/3<br> B. u/u-3, u=/-3
VashaNatasha [74]
  The correct answer is:  Answer choice:  [A]:
__________________________________________________________
→  "\frac{u}{u-3} " ;  " { u \neq ± 3 } " ; 

          →  or, write as:  " u / (u − 3) " ;  {" u ≠ 3 "}  AND:  {" u ≠ -3 "} ; 
__________________________________________________________
Explanation:
__________________________________________________________
 We are asked to simplify:
  
  \frac{(u^2+3u)}{(u^2-9)} ;  


Note that the "numerator" —which is:  "(u² + 3u)" — can be factored into:
                                                      →  " u(u + 3) " ;

And that the "denominator" —which is:  "(u² − 9)" — can be factored into:
                                                      →   "(u − 3) (u + 3)" ;
___________________________________________________________
Let us rewrite as:
___________________________________________________________

→    \frac{u(u+3)}{(u-3)(u+3)}  ;

___________________________________________________________

→  We can simplify by "canceling out" BOTH the "(u + 3)" values; in BOTH the "numerator" AND the "denominator" ;  since:

" \frac{(u+3)}{(u+3)} = 1 "  ;

→  And we have:
_________________________________________________________

→  " \frac{u}{u-3} " ;   that is:  " u / (u − 3) " ;  { u\neq 3 } .
                                                                                and:  { u\neq-3 } .

→ which is:  "Answer choice:  [A] " .
_________________________________________________________

NOTE:  The "denominator" cannot equal "0" ; since one cannot "divide by "0" ; 

and if the denominator is "(u − 3)" ;  the denominator equals "0" when "u = -3" ;  as such:

"u\neq3" ; 

→ Note:  To solve:  "u + 3 = 0" ; 

 Subtract "3" from each side of the equation; 

                       →  " u + 3 − 3 = 0 − 3 " ; 

                       → u =  -3 (when the "denominator" equals "0") ; 
 
                       → As such:  " u \neq -3 " ; 

Furthermore, consider the initial (unsimplified) given expression:

→  \frac{(u^2+3u)}{(u^2-9)} ;  

Note:  The denominator is:  "(u²  − 9)" . 

The "denominator" cannot be "0" ; because one cannot "divide" by "0" ; 

As such, solve for values of "u" when the "denominator" equals "0" ; that is:
_______________________________________________________ 

→  " u² − 9 = 0 " ; 

 →  Add "9" to each side of the equation ; 

 →  u² − 9 + 9 = 0 + 9 ; 

 →  u² = 9 ; 

Take the square root of each side of the equation; 
 to isolate "u" on one side of the equation; & to solve for ALL VALUES of "u" ; 

→ √(u²) = √9 ; 

→ | u | = 3 ; 

→  " u = 3" ; AND;  "u = -3 " ; 

We already have:  "u = -3" (a value at which the "denominator equals "0") ; 

We now have "u = 3" ; as a value at which the "denominator equals "0"); 

→ As such: " u\neq 3" ; "u \neq -3 " ;  

or, write as:  " { u \neq ± 3 } " .

_________________________________________________________
6 0
3 years ago
What is 8(2x+5)=16x+40?
polet [3.4K]

Answer:

x = infinite amount of solutions

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

Step-by-step explanation:

<u>Step 1: Define Equation</u>

8(2x + 5) = 16x + 40

<u>Step 2: Solve for </u><em><u>x</u></em>

  1. Distribute 8:                                  16x + 40 = 16x + 40
  2. Subtract 40 on both sides:          16x = 16x
  3. Divide 16 on both sides:               x = x

Here we see that <em>x</em> does indeed equal <em>x</em>.

∴ <em>x</em> has an infinite amount of solutions.

3 0
3 years ago
The number of pages that Zev, Kelly, Marneisha, and Aleisha can read in a day is shown below.
Mila [183]
Marneisha do me a favor and follow me if you have anymore questions send me a message
6 0
3 years ago
Other questions:
  • The coordinates of quadrilateral PQRS are P(0, 0), Q(a + c, 0), R(2a + c, b), and S(a, b). How can you use coordinate geometry t
    6·2 answers
  • Quiz
    13·1 answer
  • X - 3 &gt;7<br><br> Quick pls answer
    5·2 answers
  • Volume of a triangular pyramid with a slant height of 8 and base of 6 wide 6 across or 8 by 6 by 6
    14·1 answer
  • Help divide −0.75÷0.03
    12·1 answer
  • A candle in the shape of a circular cone has a base of radius r and a height of h that is the same length as the radius. which e
    13·2 answers
  • What is an equation of the line that passes through the points (-7,3) and (-4,3)?
    13·1 answer
  • Mike traveled to Greensboro by car. Going there took 6 hours, and the return trip was four hours. Mike averaged a speed of 81 mi
    15·1 answer
  • Simplify: 14y+13x+12y÷19x+4
    12·1 answer
  • Can somebody please help me on this?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!