Answer:
The number of unsold cakes was 2
Step-by-step explanation:
<u><em>The question in English is</em></u>
In the school Francisco I. Madero of Ciudad Delicias, the celebration was held for commemorate the arrival of spring, after the parade the stalls were set up of the kermesse. The first grade group bought 8 cakes and sold 3/4 of the total.
How much of the cake was not sold?
Let
x ----> number of cakes sold
y ----> number of cakes that didn't sell
we know that
The first grade group bought 8 cakes
so
-----> equation A
The first grade group sold 3/4 of the total.
so
---> equation B
substitute equation A in equation B

Find the value of y


therefore
The number of unsold cakes was 2
Answer:
2/3 min
Step-by-step explanation:
We can write these as equations
so 8-2.5x=5-0.5x
We isolate x by subtracting both sides by 5
3-2.5x=0.5x
add 2.5x to both sides
3=2x
divide both sides by 2
x=2/3min
(plz give brainliest)
Answer:
If there is no 48 divided by 8 then it is 8 x _ = 48.
Step-by-step explanation:
Think about it. There are 6 times more children than adults *6 x 8 = 48.
Answer:
The lifeguard should run across the shore a distance of 48.074 m before jumpng into the water in order to minimize the time to reach the child.
Step-by-step explanation:
This is a problem of optimization.
We have to minimize the time it takes for the lifeguard to reach the child.
The time can be calculated by dividing the distance by the speed for each section.
The distance in the shore and in the water depends on when the lifeguard gets in the water. We use the variable x to model this, as seen in the picture attached.
Then, the distance in the shore is d_b=x and the distance swimming can be calculated using the Pithagorean theorem:

Then, the time (speed divided by distance) is:

To optimize this function we have to derive and equal to zero:
![\dfrac{dt}{dx}=\dfrac{1}{4}+\dfrac{1}{1.1}(\dfrac{1}{2})\dfrac{2x-120}{\sqrt{x^2-120x+5200}} \\\\\\\dfrac{dt}{dx}=\dfrac{1}{4} +\dfrac{1}{1.1} \dfrac{x-60}{\sqrt{x^2-120x+5200}} =0\\\\\\ \dfrac{x-60}{\sqrt{x^2-120x+5200}} =\dfrac{1.1}{4}=\dfrac{2}{7}\\\\\\ x-60=\dfrac{2}{7}\sqrt{x^2-120x+5200}\\\\\\(x-60)^2=\dfrac{2^2}{7^2}(x^2-120x+5200)\\\\\\(x-60)^2=\dfrac{4}{49}[(x-60)^2+40^2]\\\\\\(1-4/49)(x-60)^2=4*40^2/49=6400/49\\\\(45/49)(x-60)^2=6400/49\\\\45(x-60)^2=6400\\\\](https://tex.z-dn.net/?f=%5Cdfrac%7Bdt%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B4%7D%2B%5Cdfrac%7B1%7D%7B1.1%7D%28%5Cdfrac%7B1%7D%7B2%7D%29%5Cdfrac%7B2x-120%7D%7B%5Csqrt%7Bx%5E2-120x%2B5200%7D%7D%20%5C%5C%5C%5C%5C%5C%5Cdfrac%7Bdt%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B4%7D%20%2B%5Cdfrac%7B1%7D%7B1.1%7D%20%5Cdfrac%7Bx-60%7D%7B%5Csqrt%7Bx%5E2-120x%2B5200%7D%7D%20%3D0%5C%5C%5C%5C%5C%5C%20%20%5Cdfrac%7Bx-60%7D%7B%5Csqrt%7Bx%5E2-120x%2B5200%7D%7D%20%3D%5Cdfrac%7B1.1%7D%7B4%7D%3D%5Cdfrac%7B2%7D%7B7%7D%5C%5C%5C%5C%5C%5C%20x-60%3D%5Cdfrac%7B2%7D%7B7%7D%5Csqrt%7Bx%5E2-120x%2B5200%7D%5C%5C%5C%5C%5C%5C%28x-60%29%5E2%3D%5Cdfrac%7B2%5E2%7D%7B7%5E2%7D%28x%5E2-120x%2B5200%29%5C%5C%5C%5C%5C%5C%28x-60%29%5E2%3D%5Cdfrac%7B4%7D%7B49%7D%5B%28x-60%29%5E2%2B40%5E2%5D%5C%5C%5C%5C%5C%5C%281-4%2F49%29%28x-60%29%5E2%3D4%2A40%5E2%2F49%3D6400%2F49%5C%5C%5C%5C%2845%2F49%29%28x-60%29%5E2%3D6400%2F49%5C%5C%5C%5C45%28x-60%29%5E2%3D6400%5C%5C%5C%5C)

As
, the lifeguard should run across the shore a distance of 48.074 m before jumpng into the water in order to minimize the time to reach the child.