Answer:
sum2 = 0
counter = 0
lst = [65, 78, 21, 33]
while counter < len(lst):
sum2 = sum2 + lst[counter]
counter += 1
Explanation:
The counter variable is initialized to control the while loop and access the numbers in <em>lst</em>
While there are numbers in the <em>lst</em>, loop through <em>lst</em>
Add the numbers in <em>lst</em> to the sum2
Increment <em>counter</em> by 1 after each iteration
Answer: l = 2142.8575 ft
v = 193.99 ft/min.
Explanation:
Given data:
Thickness of the slab = 3in
Length of the slab = 15ft
Width of the slab = 10in
Speed of the slab = 40ft/min
Solution:
a. After three phase
three phase = (0.2)(0.2)(0.2)(3.0)
= 0.024in.
wf = (1.03)(1.03)(1.03)(10.0)
= 10.927 in.
Using constant volume formula
= (3.0)(10.0)(15 x 15) = (0.024)(10.927)Lf
Lf = (3.0)(10.0)(15 x 15)/(0.024)(10.927)
= 6750 /0.2625
= 25714.28in = 2142.8575 ft
b.
vf = (0.2 x 0.2 x 3.0)(1.03 x 1.03 x 10.0)(40)/(0.024)(10.927)
= (0.12)(424.36)/0.2625
= 50.9232/0.2625
= 193.99 ft/min.
Answer:
a
Explanation:
digital identity is the answer
Answer:
Not possible.
Explanation:
According to second law of thermodynamics, the maximum efficiency any heat engine could achieve is Carnot Efficiency η defined by:

Where
and
are temperature (in Kelvin) of heat source and heatsink respectively
In our case (I will be using K = 273+°C) :

In percentage, this is 14.28% efficiency, which is the <em>maximum</em> theoretical efficiency <em>any</em> heat engine could have while working between -27 and 14 °C temperature. Any claim of more efficient heat engine between these 2 temperature are violates the second law of thermodynamics. Therefore, the claim must be false.
Answer:
nah none of those i would get a tesla, mclaren, corvette, or even a toyota camery or tundra!
Explanation:
my dads is really big into cars and stuuf so i learn a little lol! hope it helps! thanks for the points by the way!