1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
user100 [1]
2 years ago
5

The pressure of a gas in a rigid container is 125kpa at 300k, what we be the new pressure if the temperature increases to 900k​

Engineering
1 answer:
kipiarov [429]2 years ago
7 0

Answer:

375 KPa

Explanation:

From the question given above, the following data were obtained:

Initial pressure (P₁) = 125 KPa

Initial temperature (T₁) = 300 K

Final temperature (T₂) = 900 K

Final pressure (P₂) =?

The new (i.e final) pressure of the gas can be obtained as follow:

P₁/T₁ = P₂/T₂

125 / 300 = P₂ / 900

Cross multiply

300 × P₂ = 125 × 900

300 × P₂ = 112500

Divide both side by 300

P₂ = 112500 / 300

P₂ = 375 KPa

Thus, the new pressure of the gas is 375 KPa

You might be interested in
Compute the volume percent of graphite, VGr, in a 2.5 wt% C cast iron, assuming that all the carbon exists as the graphite phase
ludmilkaskok [199]

Answer:

The volume percent of graphite is 91.906 per cent.

Explanation:

The volume percent of graphite (\% V_{Gr}) is determined by the following expression:

\%V_{Gr} = \frac{V_{Gr}}{V_{Gr}+V_{Fe}} \times 100\,\%

\%V_{Gr} = \frac{1}{1+\frac{V_{Gr}}{V_{Fe}} }\times 100\,\%

Where:

V_{Gr} - Volume occupied by the graphite phase, measured in cubic centimeters.

V_{Fe} - Volume occupied by the ferrite phase, measured in cubic centimeters.

The volume of each phase can be calculated in terms of its density and mass. That is:

V_{Gr} = \frac{m_{Gr}}{\rho_{Gr}}

V_{Fe} = \frac{m_{Fe}}{\rho_{Fe}}

Where:

m_{Gr}, m_{Fe} - Masses of the graphite and ferrite phases, measured in grams.

\rho_{Gr}, \rho_{Fe} - Densities of the graphite and ferrite phases, measured in grams per cubic centimeter.

Let substitute each volume in the definition of the volume percent of graphite:

\%V_{Gr} = \frac{1}{1 +\frac{\frac{m_{Gr}}{\rho_{Gr}} }{\frac{m_{Fe}}{\rho_{Fe}} } } \times 100\,\%

\%V_{Gr} = \frac{1}{1+\left(\frac{m_{Gr}}{m_{Fe}} \right)\cdot \left(\frac{\rho_{Fe}}{\rho_{Gr}} \right)}\times 100\,\%

Let suppose that 100 grams of cast iron are available, masses of each phase are now determined:

m_{Gr} = \frac{2.5}{100}\times (100\,g)

m_{Gr} = 2.5\,g

m_{Fe} = 100\,g - 2.5\,g

m_{Fe} = 97.5\,g

If m_{Gr} = 2.5\,g, m_{Fe} = 97.5\,g, \rho_{Fe} = 7.9\,\frac{g}{cm^{3}} and \rho_{Gr} = 2.3\,\frac{g}{cm^{3}}, the volume percent of graphite is:

\%V_{Gr} = \frac{1}{1+\left(\frac{2.5\,gr}{97.5\,gr} \right)\cdot \left(\frac{7.9\,\frac{g}{cm^{3}} }{2.3\,\frac{g}{cm^{3}} } \right)} \times 100\,\%

\% V_{Gr} = 91.906\,\%

The volume percent of graphite is 91.906 per cent.

6 0
2 years ago
A harmonic oscillator with spring constant, k, and mass, m, loses 3 quanta of energy, leading to the emission of a photon.
Monica [59]

Answer: (a). E = 3.1656×10³⁴ √k/m  

(b). f = 9.246 × 10¹² Hz

(c). Infrared region.

Explanation:

From Quantum Theory,

The energy of a proton is proportional to the frequency, from the equation;

E = hf

where E = energy in joules

h = planck's constant i.e. 6.626*10³⁴ Js

f = frequency

(a). from E = hf = 1 quanta

    f = ω/2π

where ω = √k/m

consider 3 quanta of energy is lost;

E = 3hf = 3h/2π × √k/m

E = (3×6.626×10³⁴ / 2π) × √k/m

E = 3.1656×10³⁴ √k/m    

(b). given from the question that K = 15 N/m

and mass M = 4 × 10⁻²⁶ kg

To get the frequency of the emitted photon,

Ephoton =hf = 3h/2π × √k/m (h cancels out)

f = 3h/2π × √k/m

f =  3h/2π × (√15 / 4 × 10⁻²⁶ )

f = 9.246 × 10¹² Hz

(c). The region of electromagnetic spectrum, the photon belongs to is the Infrared Spectrum because the frequency ranges from about 3 GHz to  400 THz in the electromagnetic spectrum.

6 0
3 years ago
A poundal is the force required to accelerate a mass of 1 lbm at a rate of 1 ft/(s^2). Determine the acceleration of an object o
storchak [24]

Answer:

See it in the pic

Explanation:

See it in the pic

5 0
3 years ago
What are the dimensions of the base of the pyramid?
Cloud [144]

Answer:

b

Explanation:

bcus it is

7 0
3 years ago
What is the velocity of flow in an asphalt channel that has a hydraulic radius of 3.404 m, length of 200 m and bed slope of 0.00
yKpoI14uk [10]

Answer:

The velocity of flow is 10.0 m/s.

Explanation:

We shall use Manning's equation to calculate the velocity of flow

Velocity of flow by manning's equation is given by

V=\frac{1}{n}R^{2/3}S^{1/2}

where

n = manning's roughness coefficient

R = hydraulic radius

S = bed slope of the channel

We know that for an asphalt channel value of manning's roughness coefficient = 0.016

Applying values in the above equation we obtain velocity of flow as

V=\frac{1}{0.016}\times 3.404^{2/3}\times 0.005^{1/2}\\\\\therefore V=10.000m/s

7 0
3 years ago
Other questions:
  • I need help!!! Because this is due
    14·2 answers
  • If the electric field just outside a thin conducting sheet is equal to 1.5 N/C, determine the surface charge density on the cond
    9·1 answer
  • A Coca Cola can with diameter 62 mm and wall thickness 300 um has an internal pressure of 100 kPa. Calculate the principal stres
    9·1 answer
  • The line touching the circle at a point ....................... is known as ........................... .
    12·1 answer
  • Parting tool purpose
    13·1 answer
  • What is the friction factor for fully developed flow in a circular pipe where Reynolds number is 1000
    6·1 answer
  • ) Assuming different AM regulations; the receiver is using mixer with subtracting format. The frequency selectivity ratio is app
    12·1 answer
  • A tool used to put a concave edge on a plane iron is
    6·1 answer
  • EverFi future smart pie chart
    11·1 answer
  • A wheel spins at a constant angular speed of 24rad/s.How many revolutions will the dosk go through in 5minutes?​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!