1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
user100 [1]
2 years ago
5

The pressure of a gas in a rigid container is 125kpa at 300k, what we be the new pressure if the temperature increases to 900k​

Engineering
1 answer:
kipiarov [429]2 years ago
7 0

Answer:

375 KPa

Explanation:

From the question given above, the following data were obtained:

Initial pressure (P₁) = 125 KPa

Initial temperature (T₁) = 300 K

Final temperature (T₂) = 900 K

Final pressure (P₂) =?

The new (i.e final) pressure of the gas can be obtained as follow:

P₁/T₁ = P₂/T₂

125 / 300 = P₂ / 900

Cross multiply

300 × P₂ = 125 × 900

300 × P₂ = 112500

Divide both side by 300

P₂ = 112500 / 300

P₂ = 375 KPa

Thus, the new pressure of the gas is 375 KPa

You might be interested in
The boost converter of Fig. 6-8 has parameter Vs 20 V, D 0.6, R 12.5 , L 10 H, C 40 F, and the switching frequency is 200 kHz. (
mr Goodwill [35]

Answer:

a) the output voltage is 50 V

b)

- the average inductor current is 10 A

- the maximum inductor current is 13 A

- the maximum inductor current is 7 A

c) the output voltage ripple is 0.006 or 0.6%V₀

d) the average current in the diode under ideal components is 4 A

Explanation:

Given the data in the question;

a) the output voltage

V₀ = V_s/( 1 - D )

given that; V_s = 20 V, D = 0.6

we substitute

V₀ = 20 / ( 1 - 0.6 )

V₀ = 20 / 0.4

V₀ = 50 V

Therefore, the output voltage is 50 V

b)

- the average inductor current

I_L = V_s / ( 1 - D )²R

given that R = 12.5 Ω, V_s = 20 V, D = 0.6

we substitute

I_L = 20 / (( 1 - 0.6 )² × 12.5)

I_L = 20 / (( 0.4)² × 12.5)

I_L = 20 / ( 0.16 × 12.5 )

I_L = 20 / 2

I_L = 10 A

Therefore, the average inductor current is 10 A

- the maximum inductor current

I_{Lmax = [V_s / ( 1 - D )²R] + [ V

given that, R = 12.5 Ω, V_s = 20 V, D = 0.6, L = 10 μH, T = 1/200 kHz = 5 hz

we substitute

I_{Lmax = [20 / (( 1 - 0.6 )² × 12.5)] + [ (20 × 0.6 × 5) / (2 × 10) ]

I_{Lmax = [20 / 2 ] + [ 60 / 20 ]    

I_{Lmax = 10 + 3

I_{Lmax = 13 A

Therefore, the maximum inductor current is 13 A

- The minimum inductor current

I_{Lmax = [V_s / ( 1 - D )²R] - [ V

given that, R = 12.5 Ω, V_s = 20 V, D = 0.6, L = 10 μH, T = 1/200 kHz = 5 hz

we substitute

I_{Lmin = [20 / (( 1 - 0.6 )² × 12.5)] - [ (20 × 0.6 × 5) / (2 × 10) ]

I_{Lmin = [20 / 2 ] -[ 60 / 20 ]    

I_{Lmin = 10 - 3

I_{Lmin  = 7 A

Therefore, the maximum inductor current is 7 A

 

c)  the output voltage ripple

ΔV₀/V₀ = D/RCf

given that; R = 12.5 Ω, C = 40 μF = 40 × 10⁻⁶ F, D = 0.6, f = 200 Khz = 2 × 10⁵ Hz

we substitute

ΔV₀/V₀ = 0.6 / (12.5 × (40 × 10⁻⁶) × (2 × 10⁵) )

ΔV₀/V₀ = 0.6 / 100

ΔV₀/V₀ = 0.006 or 0.6%V₀

Therefore, the output voltage ripple is 0.006 or 0.6%V₀

d) the average current in the diode under ideal components;

under ideal components; diode current = output current

hence the diode current will be;

I_D = V₀/R

as V₀ = 50 V and R = 12.5 Ω

we substitute

I_D = 50 / 12.5

I_D = 4 A

Therefore, the average current in the diode under ideal components is 4 A

7 0
3 years ago
A continuous random variable, X, whose probability density function is given by f(x) = ( λe−λx , if x ≥ 0 0, otherwise is said t
Ganezh [65]

Answer:

a) F(x) = \lambda \int_0^{\infty} e^{-\lambda x} dx= -e^{-\lambda x} \Big|_0^{\infty} = 1- e^{-\lambda x} \

b) P(10 < X

Explanation:

Previous concepts

The cumulative distribution function (CDF) F(x),"describes the probability that a random variableX with a given probability distribution will be found at a value less than or equal to x".

The exponential distribution is "the probability distribution of the time between events in a Poisson process (a process in which events occur continuously and independently at a constant average rate). It is a particular case of the gamma distribution".

Part a

Let X the random variable of interest. We know on this case that X\sim Exp(\lambda)

And we know the probability denisty function for x given by:

f(x) = \lambda e^{-\lambda x} , x\geq 0

In order to find the cdf we need to do the following integral:

F(x) = \lambda \int_0^{\infty} e^{-\lambda x} dx= -e^{-\lambda x} \Big|_0^{\infty} = 1- e^{-\lambda x} \

Part b

Assuming that X \sim Exp(\lambda =0.1), then the density function is given by:

f(x) = 0.1 e^{-0.1 x} dx , x\geq 0

And for this case we want this probability:

P(10 < X

And evaluating the integral we got:

P(10 < X

4 0
3 years ago
Which statement about cathode ray tubes (CRTs) is true?
yuradex [85]

Answer:

CRTs consume less power than LCDs.

hope it helps (^^)

# Cary on learning

6 0
2 years ago
Free random points because im bored
tamaranim1 [39]

Answer:

thx for points B)

Explanation:

8 0
3 years ago
Read 2 more answers
The following are the results of a sieve analysis. U.S. sieve no. Mass of soil retained (g) 4 0 10 18.5 20 53.2 40 90.5 60 81.8
il63 [147K]

Answer:

a.)

US Sieve no.                         % finer (C₅ )

4                                                  100

10                                                95.61

20                                               82.98

40                                               61.50

60                                               42.08

100                                              20.19

200                                              6.3

Pan                                               0

b.) D10 = 0.12, D30 = 0.22, and D60 = 0.4

c.) Cu = 3.33

d.) Cc = 1

Explanation:

As given ,

US Sieve no.             Mass of soil retained (C₂ )

4                                            0

10                                          18.5

20                                         53.2

40                                         90.5

60                                         81.8

100                                        92.2

200                                       58.5

Pan                                        26.5

Now,

Total weight of the soil = w = 0 + 18.5 + 53.2 + 90.5 + 81.8 + 92.2 + 58.5 + 26.5 = 421.2 g

⇒ w = 421.2 g

As we know that ,

% Retained = C₃ = C₂×\frac{100}{w}

∴ we get

US Sieve no.               % retained (C₃ )               Cummulative % retained (C₄)

4                                            0                                           0

10                                          4.39                                      4.39

20                                         12.63                                     17.02

40                                         21.48                                     38.50

60                                         19.42                                     57.92

100                                        21.89                                     79.81

200                                       13.89                                     93.70

Pan                                        6.30                                      100

Now,

% finer = C₅ = 100 - C₄

∴ we get

US Sieve no.               Cummulative % retained (C₄)          % finer (C₅ )

4                                                     0                                          100

10                                                  4.39                                      95.61

20                                                 17.02                                     82.98

40                                                 38.50                                    61.50

60                                                 57.92                                    42.08

100                                                79.81                                     20.19

200                                                93.70                                   6.3

Pan                                                 100                                        0

The grain-size distribution is :

b.)

From the diagram , we can see that

D10 = 0.12

D30 = 0.22

D60 = 0.12

c.)

Uniformity Coefficient = Cu = \frac{D60}{D10}

⇒ Cu = \frac{0.4}{0.12} = 3.33

d.)

Coefficient of Graduation = Cc = \frac{D30^{2}}{D10 . D60}

⇒ Cc = \frac{0.22^{2}}{(0.4) . (0.12)} = 1

3 0
2 years ago
Other questions:
  • What is the heights part of Maine?
    5·1 answer
  • Design a circuit with output f and inputs x1, x0, y1, and y0. Let X = x1x0 and Y = y1y0 represent two 2-digit binary numbers. Th
    10·1 answer
  • Is it more difficult to pump oil from a well on dry land or a well under water?Why?
    11·1 answer
  • Which of the following is an example of an iterative process?
    12·1 answer
  • Aerospace engineers who work for certain government agencies are often required to have security clearance. Explain two reasons
    9·1 answer
  • Why would Chris most likely conclude that he should seek help? A. He feels in control of his emotions even though people annoy h
    15·2 answers
  • If the same strength force were exerted on both wheelchairs, which chair would go faster?
    9·1 answer
  • An automobile having a mass of 1100 kg initially moves along a level highway at 110 km/h relative to the highway. It then climbs
    7·1 answer
  • All of these are true about using adhesive EXCEPT:
    6·1 answer
  • 6.3. A __________ is used to indicate the base material that needs to be beveled.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!