Answer:
hello your question is incomplete attached below is the complete question
answer: There is a hydraulic jump
Explanation:
First we have to calculate the depth of flow downstream of the gate
y1 =
----------- ( 1 )
Cc ( concentration coefficient ) = 0.61 ( assumed )
Yg ( depth of gate opening ) = 0.5
hence equation 1 becomes
y1 = 0.61 * 0.5 = 0.305 m
calculate the flow per unit width q
q = Q / b ----------- ( 2 )
Q = 10 m^3 /s
b = 2 m
hence equation 2 becomes
q = 10 / 2 = 5 m^2/s
next calculate the depth before hydraulic jump y2 by using the hydraulic equation
answer : where y1 < y2 hence a hydraulic jump occurs in the lined channel
attached below is the remaining part of the solution
Answer:
8.85 Ω
Explanation:
Resistance of a wire is:
R = ρL/A
where ρ is resistivity of the material,
L is the length of the wire,
and A is the cross sectional area.
For a round wire, A = πr² = ¼πd².
For aluminum, ρ is 2.65×10⁻⁸ Ωm, or 8.69×10⁻⁸ Ωft.
Given L = 500 ft and d = 0.03 in = 0.0025 ft:
R = (8.69×10⁻⁸ Ωft) (500 ft) / (¼π (0.0025 ft)²)
R = 8.85 Ω
Answer:
radius = 0.045 m
Explanation:
Given data:
density of oil = 780 kg/m^3
velocity = 20 m/s
height = 25 m
Total energy is = 57.5 kW
we have now
E = kinetic energy+ potential energy + flow work
![E = \dot m ( \frac{v^2}{2] + zg + p\nu)](https://tex.z-dn.net/?f=E%20%3D%20%5Cdot%20m%20%28%20%5Cfrac%7Bv%5E2%7D%7B2%5D%20%2B%20%20zg%20%2B%20p%5Cnu%29)
![E = \dot m( \frac{v^2}{2] + zg + p_{atm} \frac{1}{\rho})](https://tex.z-dn.net/?f=E%20%3D%20%5Cdot%20m%28%20%5Cfrac%7Bv%5E2%7D%7B2%5D%20%2B%20%20zg%20%2B%20p_%7Batm%7D%20%5Cfrac%7B1%7D%7B%5Crho%7D%29)

solving for flow rate
![\dot m = 99.977we know that [tex]\dot m = \rho AV](https://tex.z-dn.net/?f=%5Cdot%20m%20%3D%2099.977%3C%2Fp%3E%3Cp%3Ewe%20know%20that%20%3C%2Fp%3E%3Cp%3E%5Btex%5D%5Cdot%20m%20%20%3D%20%5Crho%20AV)

solving for d

d = 0.090 m
so radius = 0.045 m
Answer:
the branch of science and technology concerned with the design, building, and use of engines, machines, and structures. Anything that involves engines, wires, etc. basically