Answer:
See explaination
Explanation:
The Cys3-cys97 and cys21-cys142 disulfides restrict the unfolded state of lysozyme enzyme to a class of more compact structures with a less exposed hydrophobic surface, compared to the unfolded states of reduced/non-crosslinked lysozyme. there are 2 major factors which lead to the stabilization of lysozyme due to disulfide bonds-
1- increase in the loop size due to the formation of disulfide bonds that leads to an increase in the even entropic effect.
2- the region formed should be flexible. the strain energy due to the formation of the disulfide bond is lower.
cys21-cys142 has a higher Tm than the cys3-cys97 because it involves flexible parts of the molecule. 21 and 142 residues are located on opposite sides of the active-site cleft where significant hinge-bending motion is seen. this introduces minimal strain in the protein.
Answer:
Mass = 6.538 g
Explanation:
Given data:
Mass of zinc hydroxide produced = 9.65 g
Mass of zinc required = ?
Solution:
Chemical equation:
Zn + 2MnO₂ + H₂O → Zn(OH)₂ + Mn₂O₃
Number of moles of zinc hydroxide:
Number of moles = mass/molar mass
Number of moles = 9.65 g/ 99.42 g/mol
Number of moles = 0.1 mol
now we will compare the moles of zinc and zinc hydroxide,
Zn(OH)₂ : Zn
1 : 1
0.1 : 0.1
Mass of zinc required:
Mass = number of moles × molar mass
Mass = 0.1 mol × 65.38 g/mol
Mass = 6.538 g
Answer:
14 mol e⁻
Explanation:
Step 1: Write the balanced half-reaction for the reduction of permanganate to manganese
8 H⁺(aq) + 7 e⁻ + MnO₄⁻(aq) ⇒ Mn(s) + 4 H₂O(l)
Step 2: Calculate the moles corresponding to 110 g of manganese
The molar mass of Mn is 55 g/mol.
110 g × 1 mol/55 g = 2 mol
Step 3: Calculate the number of moles of electrons needed to produce 2 moles of Mn
According to the half-reaction, 7 moles of electrons are required to produce 1 mole of Mn.
2 mol Mn × 7 mol e⁻/1 mol Mn = 14 mol e⁻
Answer:
draw the carbon chain is containing 6 carbon then attach the aldehyde group with edge carbon in chain then put the put double bond at 3 no. carbon
Answer: 68
Explanation:
Isotopes of an element have same number of protons but different number of neutrons. Which means isotopes of an element have same atomic number but different mass number.
Atomic number is equal to the number of protons or the number of electrons for a neutral atom and is specific to a particular element.
Mass number is the sum of number of protons and the number of neutrons.
Given : atomic number of element Q = 68 = number of protons
Mass number of isotope Q-136 = 136
But as isotopes have same atomic number, the number of protons will be same and hence there are 68 protons are in a neutral atom of this isotope.