Answer:
Mario uses a hot plate to heat a beaker of 50mL of water. He used a thermometer to measure the
temperature of the water. The water in the beaker began to boil when it reached the temperature of
100'C. If Mario completes the same experiment with 25mL of water, what would happen to the boiling
point?
a) The water will not reach a boil.
b) The boiling point of water will increase.
c) The boiling point of water will decrease.
d) The boiling point of water will stay the same.
Explanation:
Answer:
The one left in the hot sunlight.
Explanation:
The solubility of gases decreases when temperature increases. The gas in the soda pop (CO2) left in the sun will not stay dissolved as much as the on left in the refrigerator.
Answer:
composting scraps
recycling is the action or process of converting waste into reusable material.
Answer:
0.35 atm
Explanation:
It seems the question is incomplete. But an internet search shows me these values for the question:
" At a certain temperature the vapor pressure of pure thiophene (C₄H₄S) is measured to be 0.60 atm. Suppose a solution is prepared by mixing 137. g of thiophene and 111. g of heptane (C₇H₁₆). Calculate the partial pressure of thiophene vapor above this solution. Be sure your answer has the correct number of significant digits. Note for advanced students: you may assume the solution is ideal."
Keep in mind that if the values in your question are different, your answer will be different too. <em>However the methodology will remain the same.</em>
First we <u>calculate the moles of thiophene and heptane</u>, using their molar mass:
- 137 g thiophene ÷ 84.14 g/mol = 1.63 moles thiophene
- 111 g heptane ÷ 100 g/mol = 1.11 moles heptane
Total number of moles = 1.63 + 1.11 = 2.74 moles
The<u> mole fraction of thiophene</u> is:
Finally, the <u>partial pressure of thiophene vapor is</u>:
Partial pressure = Mole Fraction * Vapor pressure of Pure Thiophene
- Partial Pressure = 0.59 * 0.60 atm