Answer:
So, Luke and Sian has to increase the pH of the soil by adding base to it.
Explanation:
The pH is defined as the negative logarithm of the hydrogen ion concentration in their aqueous solution.
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
- With increase in hydrogen ion concentration the pH value decreases.
- With decrease in hydrogen ion concentration the pH value increases.
The pH of the soil after testing it on a kit comes out be 5.0, but they both need pH of the soil to 6.5.
Comparison of pH of soil:
= 5.0 < 6.5
= High hydrogen ion concentration > High hydrogen ion concentration
So, Luke and Sian has to increase the pH of the soil by adding base .Doing so will decrease the hydrogen ion concentration in the soil (where as addition of acid lower the pH of soil).
You can have a solution of hydrogen peroxide that might say 10% that means that 10% per mass of the hydrogen peroxide solution is the hydrogen peroxide the rest is water.
concentration is the amount of mass in the solution eg 5gdm-3
hope that helps
Answer:
Carnivorous plants are easy to grow, if you follow a few, simple rules.
Wet all of the time.
Mineral-free water.
Mineral-free soil.
Lots of light.
Wet all of the time.
Carnivorous plants are native to bogs and similar nutrient-poor habitats. As a consequence, the plants live in conditions that are constantly damp. To grow healthy carnivorous plants, it is important to duplicate their habitat as closely as possible. Keep the soil wet or at least damp all of the time. The easiest way to do this is use the tray method. Set the pots in a tray or saucer, and keep water in it at all times. Pitcher plants can grow in soggy soil with the water level in the saucer as deep as 1/2 the pot, but most carnivorous plants prefer damp to wet soil, so keep the water at about 1/4 inch and refill as soon as it is nearly gone. Water from below, by adding water to the tray, rather than watering the plant. This will avoid washing away the sticky muscilage of the sundews and butterworts and keep from closing the flytraps with a false alarm.
Mineral-free water.
Always use mineral-free water with your carnivorous plants, such as rainwater or distilled water. Try keeping a bucket near the downspout to collect rainwater. Distilled water can be purchased at the grocery store, but avoid bottled drinking water. There are simply too many minerals in it. The condensation line from an air conditioner or heat pump is another source of mineral-free water. Reverse-osmosis water is fine to use. Carnivorous plants grow in nutrient poor soils. The minerals from tap water can “over-fertilize” and “burn out” the plants. In a pinch, tap water will work for a short while, but flush out the minerals with generous portions of rainwater, when it is available.
Mineral-free soil.
The nutrient poor soils to which the carnivorous plants have adapted are often rich in peat and sand. This can be duplicated with a soil mixture of sphagnum peat moss and horticultural sand. Be sure to check the peat label for sphagnum moss. Other types will not work well. The sand should be clean and washed. Play box sand is great, and so is horticultural sand. Avoid “contractor’s sand” which will contain fine dust, silt, clay and other minerals. Never use beach sand or limestone based sand. The salt content will harm the plants. The ratio of the mix is not critical, 1 part peat with 1 part sand works well for most carnivorous plants. Flytraps prefer a bit more sand, and nepenthes prefer much more peat. Use plastic pots, as terra cotta pots will leach out minerals over time and stress your plants.
Explanation:
Kayo na Po bahala magpaigsi
Answer : The equilibrium concentration of
in the trial solution is 
Explanation :
First we have to calculate the initial moles of
and
.

and,

The given balanced chemical reaction is,

Since 1 mole of
reacts with 1 mole of
to give 1 mole of 
The limiting reagent is, 
So, the number of moles of
= 0.0020 mmole
Now we have to calculate the concentration of
.

Using Beer-Lambert's law :
where,
A = absorbance of solution
C = concentration of solution
l = path length
= molar absorptivity coefficient
and l are same for stock solution and dilute solution. So,

For trial solution:
The equilibrium concentration of
is,
![[SCN^-]_{eqm}=[SCN^-]_{initial}-[FeSCN^{2+}]](https://tex.z-dn.net/?f=%5BSCN%5E-%5D_%7Beqm%7D%3D%5BSCN%5E-%5D_%7Binitial%7D-%5BFeSCN%5E%7B2%2B%7D%5D)
= 0.00050 M
Now calculate the
.

Now calculate the concentration of
.
![[SCN^-]_{eqm}=[SCN^-]_{initial}-[FeSCN^{2+}]](https://tex.z-dn.net/?f=%5BSCN%5E-%5D_%7Beqm%7D%3D%5BSCN%5E-%5D_%7Binitial%7D-%5BFeSCN%5E%7B2%2B%7D%5D)
![[SCN^-]_{eqm}=(0.00050M)-(9.17\times 10^{-5}M)](https://tex.z-dn.net/?f=%5BSCN%5E-%5D_%7Beqm%7D%3D%280.00050M%29-%289.17%5Ctimes%2010%5E%7B-5%7DM%29)
![[SCN^-]_{eqm}=4.58\times 10^{-8}M](https://tex.z-dn.net/?f=%5BSCN%5E-%5D_%7Beqm%7D%3D4.58%5Ctimes%2010%5E%7B-8%7DM)
Therefore, the equilibrium concentration of
in the trial solution is 
C.) wash hands, utensils, and surfaces with hot soapy water