Copper has a density of 8.96 g/cm^3
Answer:
Neon is a chemical element with the symbol Ne and atomic number 10. It is a noble gas.
Answer:
Reaction of lithium with water
Explanation:
The resulting solution is basic because of the dissolved hydroxide. The reaction is exothermic, but the reaction is slower than that of sodium (immediately below lithium in the periodic table).
<u>We are given:</u><u>_______________________________________________</u>
Volume of Gas (V) = 2.5L
Pressure (P) = 1.2 atm
Temperature (T) = 25°C OR 25+273 = 298 K
Universal Gravitational Constant (R) = 0.0821
<u>Solving for number of moles:</u><u>___________________________________</u>
From the Ideal Gas Equation,
PV = nRT
(1.2)(2.5) = n(0.0821)(298) [plugging the given values]
n = [(1.2)(2.5)] / [0.0821*298]
n = 300 / [298*8.21]
n = 0.12 moles
Hence, there are 0.12 moles of Oxygen in 2.5L of 1.2 atm gas when the temperature is 25°C
The specific heat of the metal, given the data from the question is 0.60 J/gºC
<h3>Data obtained from the question </h3>
The following data were obtained from the question:
- Mass of metal (M) = 74 g
- Temperature of metal (T) = 94 °C
- Mass of water (Mᵥᵥ) = 120 g
- Temperature of water (Tᵥᵥ) = 26.5 °C
- Equilibrium temperature (Tₑ) = 32 °C
- Specific heat capacity of the water (Cᵥᵥ) = 4.184 J/gºC
- Specific heat capacity of metal (C) =?
<h3>How to determine the specific heat capacity of the metal</h3>
The specific heat capacity of the sample of gold can be obtained as follow:
According to the law of conservation of energy, we have:
Heat loss = Heat gain
MC(T –Tₑ) = MᵥᵥC(Tₑ – Tᵥᵥ)
74 × C(94 – 32) = 120 × 4.184 (32 – 26.5)
C × 4588 = 2761.44
Divide both side by 4588
C = 2761.44 / 4588
C = 0.60 J/gºC
Thus, the specific heat capacity of the metal is 0.60 J/gºC
Learn more about heat transfer:
brainly.com/question/6363778
#SPJ1