Welll the y-intercept is negative 2 so on the y axis the first point is negative 2. 1/4 is the rise over run so you would go up from your first point one unit and over to the left four units or vise versa down one unit and over to the right four units, or the image
Answer:
2x-1=x+1
2x-x=x
1+1=2
x=2
Knowing x's value, we substitute it with the equations
y=x+1
y=2+1
or y=2x-1
y=2(2)-1
y=4-1
y=3
(2,3) are your coordinates :D
I will be using the language C++. Given the problem specification, there are an large variety of solving the problem, ranging from simple addition, to more complicated bit testing and selection. But since the problem isn't exactly high performance or practical, I'll use simple addition. For a recursive function, you need to create a condition that will prevent further recursion, I'll use the condition of multiplying by 0. Also, you need to define what your recursion is.
To wit, consider the following math expression
f(m,k) = 0 if m = 0, otherwise f(m-1,k) + k
If you calculate f(0,k), you'll get 0 which is exactly what 0 * k is.
If you calculate f(1,k), you'll get 0 + k, which is exactly what 1 * k is.
So here's the function
int product(int m, int k)
{
if (m == 0) return 0;
return product(m-1,k) + k;
}
Mean:
E[Y] = E[3X₁ + X₂]
E[Y] = 3 E[X₁] + E[X₂]
E[Y] = 3µ + µ
E[Y] = 4µ
Variance:
Var[Y] = Var[3X₁ + X₂]
Var[Y] = 3² Var[X₁] + 2 Covar[X₁, X₂] + 1² Var[X₂]
(the covariance is 0 since X₁ and X₂ are independent)
Var[Y] = 9 Var[X₁] + Var[X₂]
Var[Y] = 9σ² + σ²
Var[Y] = 10σ²
193 times hope this helps