Take x-2 and insert it into 2x^2 + 3x-2 where the x is located
2x^2 + 3x-2
2(x-2)^2 + 3(x-2)-2
Now work out 2(x-2)^2 + 3(x-2)-2 also follow PEMDAS
2(x-2)^2 + 3(x-2)-2
Since (x-2)^2 is an Exponent, lets work with that first and expand (x-2)^2.
(x-2)^2
(x -2)(x-2)
x^2 -4x + 4
Now Multiply that by 2 because we have that in 2(x-2)^2
(x-2)^2 = x^2 -4x + 4
2(x-2)^2 = 2(x^2 -4x + 4)
2(x^2 -4x + 4) = 2x^2 - 8x + 8
2x^2 - 8x + 8
Now that 2(x-2)^2 is done lets move on to 3(x-2).
Use the distributive property and distribute the 3
3(x-2) = 3x - 6
All that is left is the -2
Now lets put it all together
2(x-2)^2 + 3(x-2)-2
2x^2 - 8x + 8 + 3x - 6 - 2
Now combine all our like terms
2x^2 - 8x + 8 + 3x - 6 - 2
Combine: 2x^2 = 2x^2
Combine: -8x + 3x = -5x
Combine: 8 - 6 - 2 = 0
So all we have left is
2x^2 - 5x
By applying the <em>quadratic</em> formula and discriminant of the <em>quadratic</em> formula, we find that the <em>maximum</em> height of the ball is equal to 75.926 meters.
<h3>How to determine the maximum height of the ball</h3>
Herein we have a <em>quadratic</em> equation that models the height of a ball in time and the <em>maximum</em> height represents the vertex of the parabola, hence we must use the <em>quadratic</em> formula for the following expression:
- 4.8 · t² + 19.9 · t + (55.3 - h) = 0
The height of the ball is a maximum when the discriminant is equal to zero:
19.9² - 4 · (- 4.8) · (55.3 - h) = 0
396.01 + 19.2 · (55.3 - h) = 0
19.2 · (55.3 - h) = -396.01
55.3 - h = -20.626
h = 55.3 + 20.626
h = 75.926 m
By applying the <em>quadratic</em> formula and discriminant of the <em>quadratic</em> formula, we find that the <em>maximum</em> height of the ball is equal to 75.926 meters.
To learn more on quadratic equations: brainly.com/question/17177510
#SPJ1
Answer:
Area = 867 meters
Step-by-step explanation:
You have a rectangle. This means opposite sides are equal. If you set these expressions equal to each other, you will get two equations with two unknowns, x and y. Next, solve the system of equations to find x and y. Then, use the values to find the length and width of the rectangle. Last, multiply length × width to find the area.
Answer:
c
Step-by-step explanation:
In unit of batches over days, let r be the planned rate and R be the actual increased rate. The difference between R and r is described as 10 shirts per day.
R-r=10
Rate Time Batches
Planned r 8 1
Actual R 7 1
![\left[\begin{array}{c}r=1/8&R=1/7&R-r=HowManyBatchesInTenShirts\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dr%3D1%2F8%26R%3D1%2F7%26R-r%3DHowManyBatchesInTenShirts%5Cend%7Barray%7D%5Cright%5D)
, the number of batches equivalent to 10 shirts.

OneBatch=560*Shirts
Hope This Helps!!!