
This ODE has characteristic equation


which has roots at
. Then the characteristic solution to the ODE is


Answer:
<em>suwi6q74diyer7ityw7reuDjuss36audlsgo74wridoyaurslhjsgjfaufalakateUd</em>
Step-by-step explanation:
will3urafg-"7'-"/-()4<u> </u><u>mhl374</u><u>y</u><u>3</u><u>l</u><u>u</u><u>s</u><u>d</u><u>u</u><u>s</u><u>i</u><u>t</u><u>z</u><u>l</u><u>a</u><u>7</u><u>w</u><u>h</u><u>f</u><u>z</u><u>s</u><u>p</u><u>r</u><u>X</u><u>j</u><u>a</u><u>u</u><u>e</u><u>g</u><u>k</u><u>z</u><u>h</u><u>r</u><u>o</u><u>y</u>
Answer:
No
Step-by-step explanation:
If you mean they are the sides lengths,
33^2+ 56^2 != 66^2
3136 != 4356
Hi There!
Step-by-step explanation:
Lets Use:
x = hours it snows.
y = total inches after it snows.
4 inchest is there before it snows.
It snows 1.5 inches every hour.
Answer:
y = 1.5x + 4
Hope This Helps :)