Answer:
B) 0.6M
Explanation:
I apologize in advance if it is not correct :l
The (M1V1= M2V2) is given for you to plug in the correct numbers so let's jot this down.
(M1*V1= M2*V2)
so they give us 6M which would be our (M1), from this we can also conclude that 5mL is also V1; ( if you notice the M1's and V1's are always found next to eachother). This leads us to our 50mL, this would be our V2 because the volume went from 5mL to 50mL. Now lets put this in order based on what we know.
M1= 6M (M1*V1= M2*V2)
V1= 5mL
M2= ?
V2= 50mL
now we plug in what we know into the equation to find the unknown (M2)
(6M*5mL= M2*50mL)
now we could do the long math, but I don't think your on brainly to do the hard way. so lets keep it simple!
We are going to put the 50mL under the (6M*5mL) for division.
This is honestly MUCH easier, than manually answering. you just put that in the calculator and it'll give you B) 0.6M
honestly though I might not know what I'm doing cuz im currently doing my test and decided to answer this question ;)
Good Luck!
Answer:
b. It should be dumped in a beaker labeled "waste copper" on one's bench during the experiment.
d. It should be disposed of in the bottle for waste copper ion when work is completed.
Explanation:
Solutions containing copper ion should never be disposed of by dumping them in a sink or in common trash cans, because this will cause pollution in rivers, lakes and seas, being a contaminating agent to both human beings and animals. They should be placed in appropriate compatible containers that can be hermetically sealed. The sealed containers must be labeled with the name and class of hazardous substance they contain and the date they were generated.
It never should be returned to the bottle containing the solution, since it can contaminate the solution of the bottle.
In the Solutions and Spectroscopy experiments there is always wastes.
The many electron diamonds around the central carbon are 1689
Don't really know if this is what your asking but P1/T1= P2/T2 should show how the pressure varies with temperature (V is left out because it's constant since the gas is trapped in an aerosol can). As the temperature rises the pressure rises and if it gets too high then the can explodes, which is why it should be stored in a cool place. There's also PV=nRT might be kind of hard to find moles (n) though.
Answer:
50 g of K₂CO₃ are needed
Explanation:
How many grams of K₂CO₃ are needed to make 500 g of a 10% m/m solution?
We analyse data:
500 g is the mass of the solution we want
10% m/m is a sort of concentration, in this case means that 10 g of solute (K₂CO₃) are contained in 100 g of solution
Therefore we can solve this, by a rule of three:
In 100 g of solution we have 10 g of K₂CO₃
In 500 g of solution we may have, (500 . 10) / 100 = 50 g of K₂CO₃