1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrMuchimi
3 years ago
15

Please help thank you! Solve for x and y

Mathematics
2 answers:
Mademuasel [1]3 years ago
6 0

Answer:

Step-by-step explanation:

All 4 sides are equal. (They are marked that way).

8x = 5x + 6                   Subtract 5x from both sides

8x - 5x = 5x - 5x + 6    Combine

3x = 6                           Divide by 3

3x/3 = 6/3                    

x = 2

Consecutive angles of  a rhombus are supplementary

97  + 12y - 1 = 180         Combine

96 + 12y = 180              Subtract 86 from both sides

12y = 180 - 96

12y = 84                        Divide by 12

y = 84/12

y = 7

solong [7]3 years ago
4 0

Answer:

x = 2

y = 7

I aced this lesson in 6th grade.

Step-by-step explanation:

hope this helps. . . <3

good luck!    uωu

You might be interested in
The medical assistant weighs patients each month. Mrs. Smith weighed 120 pounds last month.
Paladinen [302]

13) 120 + 1.5 + 0.25 = 121.75 pounds

14) 4 - 1.5 = 2.5 pints

15) (2.25)(32)= $72

5 0
2 years ago
Simplify the expression <br><br> 6(-5n + 7)
Hunter-Best [27]

6(-5n+7)=0


We simplify the equation to the form, which is simple to understand

6(-5n+7)=0


Reorder the terms in parentheses

+(-30n+42)=0


Remove unnecessary parentheses

-30n+42=0


We move all terms containing n to the left and all other terms to the right.

-30n=0-42


We simplify left and right side of the equation.

-30n=-42


We divide both sides of the equation by -30 to get n.

n=1.4

Hope this helps!

7 0
3 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=%5Cmathsf%7BIf~~x%3D10%5E%7B%5Cdfrac%7B1%7D%7B1-log~z%7D%7D~~and~~y%3D10%5E%7B%5Cdfrac%7B1%7D%
alukav5142 [94]
\large\begin{array}{l} \textsf{Prove the following theorem:}\\\\ &#10;\textsf{If }\mathsf{x=10^\frac{1}{1-\ell og\,z}}\textsf{ and &#10;}\mathsf{y=10^{\frac{1}{1-\ell og\,x}},}\textsf{ then &#10;}\mathsf{z=10^{\frac{1}{1-\ell og\,y}}.}\\\\\\ &#10;\bullet~~\textsf{From the &#10;hypoteses, we must have:}\\\\ \mathsf{\ell og\,z\ne 1~\Rightarrow~z>0~~and~~z\ne &#10;10\qquad(i)}\\\\ \mathsf{\ell og\,x\ne 1~\Rightarrow~x>0~~and~~x\ne &#10;10\qquad(ii)} \end{array}

__________


\large\begin{array}{l} \textsf{Let's continue with the proof, using (i) and (ii) everytime}\\\textsf{it's needed.}\\\\ \textsf{If }\mathsf{x=10^{\frac{1}{1-\ell og\,z}},}\textsf{ then}\\\\ \mathsf{\ell og\,x=\ell og\!\left(10^{\frac{1}{1-\ell og\,z}}\right )}\\\\ \mathsf{\ell og\,x=\dfrac{1}{1-\ell og\,z}}\\\\ \mathsf{-\ell og\,x=\dfrac{-1}{1-\ell og\,z}} \end{array}


\large\begin{array}{l}&#10; \mathsf{1-\ell og\,x=1+\dfrac{-1}{1-\ell og\,z}}\\\\ \mathsf{1-\ell &#10;og\,x=\dfrac{1-\ell og\,z}{1-\ell og\,z}+\dfrac{-1}{1-\ell og\,z}}\\\\ &#10;\mathsf{1-\ell og\,x=\dfrac{1-\ell og\,z-1}{1-\ell og\,z}}\\\\ &#10;\mathsf{1-\ell og\,x=\dfrac{-\ell og\,z}{1-\ell &#10;og\,z}}\qquad\textsf{(using (i) below)} \end{array}


\large\begin{array}{l} \textsf{Since }\mathsf{\ell og\,x\ne 1,}\textsf{ both sides of the equality above will}\\\textsf{never be zero. Therefore, both sides can be inverted:}\\\\\textsf{Taking the reciprocal of both sides,}\\\\ \mathsf{\dfrac{1}{1-\ell og\,x}=\dfrac{1}{~\frac{-\ell og\,z}{1-\ell og\,z}~}}\\\\ \mathsf{\dfrac{1}{1-\ell og\,x}=\dfrac{1-\ell og\,z}{-\ell og\,z}}\\\\ \mathsf{\dfrac{1}{1-\ell og\,x}=\dfrac{\ell og\,z-1}{\ell og\,z}} \end{array}


\large\begin{array}{l} \textsf{From the last line above, we get as an immediate condition}\\\textsf{for z:}\\\\ \mathsf{\ell og\,z\ne 0~~\Rightarrow~~z\ne 1\qquad(iii)}\\\\\\ \textsf{Taking exponentials with base 10,}\\\\ \mathsf{10^{\frac{1}{1-\ell og\,x}}=10^{\frac{1-\ell og\,z}{-\ell og\,z}}} \end{array}


\large\begin{array}{l}&#10; \textsf{But }\mathsf{10^{\frac{1}{1-\ell &#10;og\,x}}=y.}\textsf{ So we get}\\\\ &#10;\mathsf{y=10^{\frac{1-\ell og\,z}{-\ell og\,z}}}\\\\\\\textsf{then}\\\\ \mathsf{\ell og\,y=\ell og\!\left(10^{\frac{1-\ell og\,z}{-\ell&#10; og\,z}}\right)}\\\\ \mathsf{\ell og\,y=\dfrac{1-\ell og\,z}{-\ell &#10;og\,z}}\\\\ \end{array}

\large\begin{array}{l} &#10;\mathsf{-\ell og\,y=-\,\dfrac{1-\ell og\,z}{-\ell og\,z}}\\\\ &#10;\mathsf{-\ell og\,y=\dfrac{1-\ell og\,z}{\ell og\,z}}\\\\ \mathsf{1-\ell&#10; og\,y=1+\dfrac{1-\ell og\,z}{\ell og\,z}}\\\\ \mathsf{1-\ell &#10;og\,y=\dfrac{\ell og\,z}{\ell og\,z}+\dfrac{1-\ell og\,z}{\ell &#10;og\,z}}\\\\ \mathsf{1-\ell og\,y=\dfrac{\ell og\,z+1-\ell og\,z}{\ell &#10;og\,z}}\\\\ \mathsf{1-\ell og\,y=\dfrac{1}{\ell &#10;og\,z}}\qquad\textsf{(using (iii) below)} \end{array}


\large\begin{array}{l} \\\\ \textsf{Notice that the right side of the equality above is a nonzero}\\\textsf{number, so it is possible to take the reciprocal of both sides:}\\\\ \mathsf{\dfrac{1}{1-\ell og\,y}=\ell og\,z}\\\\ \mathsf{10^{\frac{1}{1-\ell og\,y}}=10^{\ell og\,z}}\\\\ \mathsf{10^{\frac{1}{1-\ell og\,y}}=z}\\\\ \boxed{\begin{array}{c}\mathsf{z=10^{\frac{1}{1-\ell og\,y}}} \end{array}}\\\\\\ \textsf{which is what had to be shown.} \end{array}


If you're having problems understanding the answer, try to see it through your browser: brainly.com/question/2105740


\large\begin{array}{l} \textsf{Any doubt? Please, comment below.}\\\\\\ \textsf{Best wishes! :-)} \end{array}


Tags: <em>logarithm log proof statement theorem exponential base condition hypothesis</em>

3 0
3 years ago
9.45 = 28.2 can you answer
mixas84 [53]

Answer:

9.45<em>g</em><em>=</em><em> </em>28.2

Divide through by 9.45

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>g</em><em>=</em><em>2</em><em>8</em><em>.</em><em>2</em><em>/</em><em>9</em><em>.</em><em>4</em><em>5</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>g=</em><em>2</em><em>.</em><em>9</em><em>8</em><em> </em><em>to </em><em>2</em><em>s</em><em>.</em><em>f</em>

8 0
3 years ago
Read 2 more answers
1. How many lines are there in the figure?
kirza4 [7]

Answer: Looking for the same thing answer!!

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • Evaluate the integral <br> ∫1(x2x2−16)−−−−−−−√dx<br> using the substitution <br> x=4secθ
    14·1 answer
  • What is 3/4s equal to
    13·1 answer
  • Find the equation of the line perpendicular to y=−2 that passes through the point (4, −2).
    7·2 answers
  • What is 5 1/2 × 2 1/3
    7·2 answers
  • The distance from the tether ball pole to the edge of the circle is 5 feet what is the cicuference of the circle ?
    12·1 answer
  • Where t is the number of years since 1997 and y is the number of camera phones shipped(in millions). How many camera phones were
    5·1 answer
  • F(x) = x2. What is g(x)<br> Please hurry
    6·1 answer
  • Equation that passes 1,3 and slope of 2 in point slope form
    11·2 answers
  • Look at pic and answer plzzzzz its a DLA (7th)
    8·2 answers
  • 3.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!