1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anvisha [2.4K]
3 years ago
11

Can someone PLZ answer my Previous math question???

Mathematics
1 answer:
svlad2 [7]3 years ago
8 0

Sorry, But the link is not working.

You might be interested in
You miss 3 out of 10 questions on a science quiz and 4 out of 15 questions on a math quiz. Which quiz has a higher percent of co
EastWind [94]
3 out of 10 quiz because if you divide 3 by 10 it's 0.3 but if you do 4/15 it's 0.26...
8 0
3 years ago
Read 2 more answers
A right triangle has a side length of 12 m and a side length of 15 m. Find the length of the missing hypotenuse. Rounded to the
kolezko [41]

Answer:

19.2

Step-by-step explanation:

12 squared + 15 squared= C squared

144 + 225 = C squared

369 = C squared

Do square root of 369, which is

19.2

7 0
3 years ago
If a and b are positive numbers, find the maximum value of f(x) = x^a(2 − x)^b on the interval 0 ≤ x ≤ 2.
Ad libitum [116K]

Answer:

The maximum value of f(x) occurs at:

\displaystyle x = \frac{2a}{a+b}

And is given by:

\displaystyle f_{\text{max}}(x) = \left(\frac{2a}{a+b}\right)^a\left(\frac{2b}{a+b}\right)^b

Step-by-step explanation:

Answer:

Step-by-step explanation:

We are given the function:

\displaystyle f(x) = x^a (2-x)^b \text{ where } a, b >0

And we want to find the maximum value of f(x) on the interval [0, 2].

First, let's evaluate the endpoints of the interval:

\displaystyle f(0) = (0)^a(2-(0))^b = 0

And:

\displaystyle f(2) = (2)^a(2-(2))^b = 0

Recall that extrema occurs at a function's critical points. The critical points of a function at the points where its derivative is either zero or undefined. Thus, find the derivative of the function:

\displaystyle f'(x) = \frac{d}{dx} \left[ x^a\left(2-x\right)^b\right]

By the Product Rule:

\displaystyle \begin{aligned} f'(x) &= \frac{d}{dx}\left[x^a\right] (2-x)^b + x^a\frac{d}{dx}\left[(2-x)^b\right]\\ \\ &=\left(ax^{a-1}\right)\left(2-x\right)^b + x^a\left(b(2-x)^{b-1}\cdot -1\right) \\ \\ &= x^a\left(2-x\right)^b \left[\frac{a}{x} - \frac{b}{2-x}\right] \end{aligned}

Set the derivative equal to zero and solve for <em>x: </em>

\displaystyle 0= x^a\left(2-x\right)^b \left[\frac{a}{x} - \frac{b}{2-x}\right]

By the Zero Product Property:

\displaystyle x^a (2-x)^b = 0\text{ or } \frac{a}{x} - \frac{b}{2-x} = 0

The solutions to the first equation are <em>x</em> = 0 and <em>x</em> = 2.

First, for the second equation, note that it is undefined when <em>x</em> = 0 and <em>x</em> = 2.

To solve for <em>x</em>, we can multiply both sides by the denominators.

\displaystyle\left( \frac{a}{x} - \frac{b}{2-x} \right)\left((x(2-x)\right) = 0(x(2-x))

Simplify:

\displaystyle a(2-x) - b(x) = 0

And solve for <em>x: </em>

\displaystyle \begin{aligned} 2a-ax-bx &= 0 \\ 2a &= ax+bx \\ 2a&= x(a+b) \\  \frac{2a}{a+b} &= x  \end{aligned}

So, our critical points are:

\displaystyle x = 0 , 2 , \text{ and } \frac{2a}{a+b}

We already know that f(0) = f(2) = 0.

For the third point, we can see that:

\displaystyle f\left(\frac{2a}{a+b}\right) = \left(\frac{2a}{a+b}\right)^a\left(2- \frac{2a}{a+b}\right)^b

This can be simplified to:

\displaystyle f\left(\frac{2a}{a+b}\right) = \left(\frac{2a}{a+b}\right)^a\left(\frac{2b}{a+b}\right)^b

Since <em>a</em> and <em>b</em> > 0, both factors must be positive. Thus, f(2a / (a + b)) > 0. So, this must be the maximum value.

To confirm that this is indeed a maximum, we can select values to test. Let <em>a</em> = 2 and <em>b</em> = 3. Then:

\displaystyle f'(x) = x^2(2-x)^3\left(\frac{2}{x} - \frac{3}{2-x}\right)

The critical point will be at:

\displaystyle x= \frac{2(2)}{(2)+(3)} = \frac{4}{5}=0.8

Testing <em>x</em> = 0.5 and <em>x</em> = 1 yields that:

\displaystyle f'(0.5) >0\text{ and } f'(1)

Since the derivative is positive and then negative, we can conclude that the point is indeed a maximum.

Therefore, the maximum value of f(x) occurs at:

\displaystyle x = \frac{2a}{a+b}

And is given by:

\displaystyle f_{\text{max}}(x) = \left(\frac{2a}{a+b}\right)^a\left(\frac{2b}{a+b}\right)^b

5 0
3 years ago
Please help is this inequality true or false 12 &gt; 9
amm1812
TRUE are you in like first grade or something
5 0
3 years ago
Read 2 more answers
Graph the equation using the slope and y-intercept for 2y=4x+4​
svp [43]

So first you divide by 2 from y so it would equal y=4x+2 and the slope is 4 over 1 and the yintercept is (0,2)

3 0
3 years ago
Other questions:
  • A small grocery store had 10 cartons of milk, 2 of which were sour. If you are going to buy the 6th carton of milk sold that day
    6·1 answer
  • A person invests 5000 dollars in a bank. The bank pays 6.5% interest compounded monthly. To the nearest tenth of a year, how lon
    6·2 answers
  • A pair of equations is shown below:
    9·1 answer
  • The radius of the circle is 7 cm. What is the area of the circle in cm2? Leave answer in terms of pi
    10·1 answer
  • Karen works for 85 hours throughout a two-week period. She earns $1891.25 throughout this period . How much did Karen earn for e
    11·1 answer
  • The diagram shows a circle inside a square.<br> a O<br> 16 cm<br> Work out the area of the circle.
    15·1 answer
  • Answer for 30 points and brainilest
    13·1 answer
  • PLEASE HELP IM GONNA FAIL
    14·1 answer
  • Jessica's bedroom is 17 feet long and 9 1/2 feet wide. What is the area of the bedroom?
    13·1 answer
  • What is the following product?<br> 3√4 √3
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!