Answer:
B, Work with the math instructors to create a list of students currently taking a math class. Randomly select
Step-by-step explanation:
Let's think of each scenario at a time.
(A) We select 100 students enrolled in college randomly that should be fine because we are taking only students that can take classes. this rules out faculty members and any other persons but also there may be students that will never take any math course as part of their study plan, this is ruled out on that basis.
(B)if we take 100 students from the list of math instructor, that will ensure that we have taken students that are taking math class now, and math is part of their study plan, seems fine.
(C) visiting cafeteria randomly on multiple days will give us random persons that may not even be enrolled in university. this can be ruled out on that basis.
(D)Ten class at random and surveying each student in every class will make sampling size large or small depending on students enrolled in each of the class this will not give us reliable results.
We can conclude that (B) is the beast method for obtaining reliable results.
No, these do not always forma unique triangles because it depends on what size your sides are because if you have 3 sides of the same length then that’s a equilateral and if you have two sides of the same length and one side that’s not then that would be an Isosceles triangle and if you had no sides of the same length then that would be a scalene triangle.
Answer:
<h3>
f(x) = - ⁴/₉(x - 3)² + 6</h3>
Step-by-step explanation:
The vertex form of the equation of the parabola with vertex (h, k) is:
f(x) = a(x - h)² + k
So for vertex (3, 6) it will be:
f(x) = a(x - 3)² + 6
<u>y intercept: 2</u> means f(0) = 2
f(0) = a(0 - 3)² + 6
2 = a(-3)² + 6
2 -6 = 9a + 6 -6
-4 = 9a
a = ⁻⁴/₉
Therefore:
The vertex form of quardatic function with vertex: (3,6) and y intercept: 2 is
<u>f(x) = - ⁴/₉(x - 3)² + 6</u>
Answer:
C. Decreases the margin of error and hence increases the precision
Step-by-step explanation:
If we select a sample by Simple Random Sampling in a population of “infinite” size (a population so large that we do not know its size exactly), then the margin of error is given by
where
<em>Z = The Z-score corresponding to the confidence level
</em>
<em>S = The estimated standard deviation of the population
</em>
<em>n = the size of the sample.
</em>
As we can see, since n is in the denominator of the fraction and the numerator is kept constant, the larger the sample size the smaller the margin of error, so the correct choice is:
C. Decreases the margin of error and hence increases the precision