1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksivusya [100]
3 years ago
5

If f(x) = 7x- 6, which of the following is the inverse of kx)?​

Mathematics
1 answer:
Yanka [14]3 years ago
3 0

Step-by-step explanation:

f(x) = 7x - 6

\:

<u>Inverse</u>

y = 7x - 6

x = 7y - 6

x + 6 = 7y

y =  \frac{x + 6}{7}

{f}^{ - 1} (x) =  \frac{x + 6}{7}

You might be interested in
Hi, please what's 4/5 - (-1/3) quick! I dont have that much time PLEASE
ipn [44]

Answer:

17/15

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
What is the perimeter of △ABC?
timofeeve [1]
<h3>Given</h3>
  • ΔABC
  • A(-3, -1), B(0, 3), C(1, 2)
<h3>Find</h3>
  • the length of the perimeter of ΔABC to the nearest tenth
<h3>Solution</h3>

The perimeter of a triangle is the sum of the lengths of its sides. The length of each side can be found using the Pythagorean theorem. Effectively, each pair of points is treated as the end-points of the hypotenuse of a right triangle with legs parallel to the x- and y-axes. The leg lengths are the differences betweeen the x- and y- coordinates of the points.

The difference of the x-coordinates of segment AB are 0-(-3) = 3. The y-coordinate difference is 3-(-1) = 4. So, the leg lengths of the right triangle whose hypotenuse is segment AB are 3 and 4. The Pythagorean theorem tells us

... AB² = 3² +4² = 9 +16 = 25

... AB = √25 = 5

You may recognize this as the 3-4-5 triangle often introduced as one of the first ones you play with when you learn the Pythagorean theorem.

LIkewise, segment AC has coordinate differences of ...

... C - A = (1, 2) -(-3, -1) = (4, 3)

These are the same leg lengths (in the other order) as for segment AB, so its length is also 5.

Segment BC has coordinate differences ...

... C - B = (1, 2) -(0, 3) = (1, -1)

The length of the line segment is figured as the root of the sum of squares, even though one of the coordinate differences is negative. The leg lengths of the right triangle used for finding the length of BC are the absolute value of these differences, or 1 and 1. Then the length BC is

... BC = √(1² +1²) = √2 ≈ 1.4

So the perimeter of the triangle ABC is

... AB + BC + AC = 5 + 1.4 + 5 = 11.4 . . . . perimeter of ∆ABC in units

_____

Please be aware that the advice to "round each step" is <em>bad advice,</em> in general. For real-world math problems, you only round the final result. You always carry at least enough precision in the numbers to ensure that there will not be any error in the final rounding.

In this problem, the only number that is not an integer is √2, so it doesn't really matter.

7 0
3 years ago
Five points are plotted on a cm grid.The 5 points are 5 vertices of a hexagon. Each side of the hexagon has the same length.Work
Eddi Din [679]

Answer:

(13, 5)

Step-by-step explanation:

6 0
2 years ago
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
3 years ago
What are 3 equivalent ratios to 3/4?
blsea [12.9K]

Answer:

6/8, 9/12, 12/16

Step-by-step explanation:

Multiply the numerator and denominator by the same amount to maintain the same ration.

\frac{3}{4} =\frac{6}{8} = \frac{9}{12} =\frac{12}{16}

8 0
3 years ago
Other questions:
  • The point (-1, 8) is on a line that has a slope of -3. Is the point (4, -7) on the same line?
    7·1 answer
  • PLZ HELP WITH MATH
    15·1 answer
  • Simba Travel Agency arranges trips for climbing Mount Kilimanjaro. For each trip, they charge an initial fee of $100 in addition
    12·1 answer
  • The diameter of the moon is about 3,476 kilometers. The distance from Earth to the moon is about 384,400 kilometers.About how ma
    8·2 answers
  • Graph a line with a slope of -2/5 That contains the point (-3,5)
    8·1 answer
  • – 3х – бу = 17; (6, 3)
    15·1 answer
  • 2 Points
    6·1 answer
  • A company has 24 employees. Each employee volunteers to bring 1 item to the local school
    14·2 answers
  • A point goes through the origin and has a slope of 3. What is the equation of the line?
    7·1 answer
  • Tell whether the angles are complementary or supplementary. Then find the value of x.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!