The vertex of the graph of f(x)= |x-3|+6 is located at (3, 6)
<h3>How to determine the vertex?</h3>
The equation of the function is given as:
f(x) = |x - 3| + 6
The above function is an absolute value function.
An absolute value function is represented as:
f(x) = a|x - h| + k
Where:
Vertex = (h, k)
By comparison, we have:
Vertex = (3, 6)
Hence, the vertex of the graph of f(x)= |x-3|+6 is located at (3, 6)
Read more about vertex at:
brainly.com/question/16799565
#SPJ1
Answer:
I think it's 15 students
Step-by-step explanation:
i think since 150 is half of 300 so in each class there should also be half of the people wearing red
Answer:
The answer is below
Step-by-step explanation:
Let S denote syntax errors and L denote logic errors.
Given that P(S) = 36% = 0.36, P(L) = 47% = 0.47, P(S ∪ L) = 56% = 0.56
a) The probability a program contains both error types = P(S ∩ L)
The probability that the programs contains only syntax error = P(S ∩ L') = P(S ∪ L) - P(L) = 56% - 47% = 9%
The probability that the programs contains only logic error = P(S' ∩ L) = P(S ∪ L) - P(S) = 56% - 36% = 20%
P(S ∩ L) = P(S ∪ L) - [P(S ∩ L') + P(S' ∩ L)] =56% - (9% + 20%) = 56% - 29% = 27%
b) Probability a program contains neither error type= P(S ∪ L)' = 1 - P(S ∪ L) = 1 - 0.56 = 0.44
c) The probability a program has logic errors, but not syntax errors = P(S' ∩ L) = P(S ∪ L) - P(S) = 56% - 36% = 20%
d) The probability a program either has no syntax errors or has no logic errors = P(S ∪ L)' = 1 - P(S ∪ L) = 1 - 0.56 = 0.44
The answer is C. Isosceles Triangle .... 2 of the sides are equal
Answer:
40: 1, 2, 4, 5, 8, 10, 20, 40
150: 1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150
Step-by-step explanation: