1500 pounds since a ton I 2000 just multiply it by 3/4
Answer:
Step-by-step explanation:
![2x > 30+\frac{5}{4x} \\2x-\frac{5}{4x} > 30\\\frac{8x^2-5}{4x} > 30\\case~1\\if~x > 0\\8x^2-5 > 120x\\8x^2-120x > 5\\x^2-15x > \frac{5}{8} \\adding~(-\frac{15}{2} )^2~to~both~sides\\(x-\frac{15}{2} )^2 > \frac{5}{8}+\frac{225}{4} \\(x-\frac{15}{2} )^2 > \frac{455}{8} \\x-\frac{15}{2} < -\sqrt{\frac{455}{8} } \\x < \frac{15}{2}-\sqrt{\frac{455}{8} } \\or~x < 0\\rejected~as~x > 0](https://tex.z-dn.net/?f=2x%20%3E%2030%2B%5Cfrac%7B5%7D%7B4x%7D%20%5C%5C2x-%5Cfrac%7B5%7D%7B4x%7D%20%3E%2030%5C%5C%5Cfrac%7B8x%5E2-5%7D%7B4x%7D%20%3E%2030%5C%5Ccase~1%5C%5Cif~x%20%3E%200%5C%5C8x%5E2-5%20%3E%20120x%5C%5C8x%5E2-120x%20%3E%205%5C%5Cx%5E2-15x%20%3E%20%5Cfrac%7B5%7D%7B8%7D%20%5C%5Cadding~%28-%5Cfrac%7B15%7D%7B2%7D%20%29%5E2~to~both~sides%5C%5C%28x-%5Cfrac%7B15%7D%7B2%7D%20%29%5E2%20%3E%20%5Cfrac%7B5%7D%7B8%7D%2B%5Cfrac%7B225%7D%7B4%7D%20%5C%5C%28x-%5Cfrac%7B15%7D%7B2%7D%20%29%5E2%20%3E%20%5Cfrac%7B455%7D%7B8%7D%20%5C%5Cx-%5Cfrac%7B15%7D%7B2%7D%20%3C%20-%5Csqrt%7B%5Cfrac%7B455%7D%7B8%7D%20%7D%20%20%5C%5Cx%20%3C%20%5Cfrac%7B15%7D%7B2%7D-%5Csqrt%7B%5Cfrac%7B455%7D%7B8%7D%20%7D%20%5C%5Cor~x%20%3C%200%5C%5Crejected~as~x%20%3E%200)
![x-\frac{15}{2} > \sqrt{\frac{455}{8} } \\x > \frac{15}{2} +\sqrt{\frac{455}{8} }](https://tex.z-dn.net/?f=x-%5Cfrac%7B15%7D%7B2%7D%20%3E%20%5Csqrt%7B%5Cfrac%7B455%7D%7B8%7D%20%7D%20%5C%5Cx%20%3E%20%5Cfrac%7B15%7D%7B2%7D%20%2B%5Csqrt%7B%5Cfrac%7B455%7D%7B8%7D%20%7D)
case~2
![if~x < 0\\8x^2-5 < 120x\\8x^2-120x < 5\\x^2-15x < \frac{5}{8} \\adding~(-\frac{15}{2} )^2\\(x-\frac{15}{2} )^2 < \frac{5}{8} +(-\frac{15}{2} )^2\\|x-\frac{15}{2} | < \frac{5+450}{8} \\-\sqrt{\frac{455}{8} } < x-\frac{15}{2} < \sqrt{\frac{455}{8} } \\\frac{15}{2} -\sqrt{\frac{455}{8} } < x < \frac{15}{2} +\sqrt{\frac{455}{8} } \\but~x < 0\\7.5-\sqrt{\frac{455}{8} } < x < 0](https://tex.z-dn.net/?f=if~x%20%3C%200%5C%5C8x%5E2-5%20%3C%20120x%5C%5C8x%5E2-120x%20%3C%205%5C%5Cx%5E2-15x%20%3C%20%5Cfrac%7B5%7D%7B8%7D%20%5C%5Cadding~%28-%5Cfrac%7B15%7D%7B2%7D%20%29%5E2%5C%5C%28x-%5Cfrac%7B15%7D%7B2%7D%20%29%5E2%20%3C%20%5Cfrac%7B5%7D%7B8%7D%20%2B%28-%5Cfrac%7B15%7D%7B2%7D%20%29%5E2%5C%5C%7Cx-%5Cfrac%7B15%7D%7B2%7D%20%7C%20%3C%20%5Cfrac%7B5%2B450%7D%7B8%7D%20%5C%5C-%5Csqrt%7B%5Cfrac%7B455%7D%7B8%7D%20%7D%20%3C%20x-%5Cfrac%7B15%7D%7B2%7D%20%3C%20%5Csqrt%7B%5Cfrac%7B455%7D%7B8%7D%20%7D%20%5C%5C%5Cfrac%7B15%7D%7B2%7D%20-%5Csqrt%7B%5Cfrac%7B455%7D%7B8%7D%20%7D%20%3C%20x%20%3C%20%5Cfrac%7B15%7D%7B2%7D%20%2B%5Csqrt%7B%5Cfrac%7B455%7D%7B8%7D%20%7D%20%5C%5Cbut~x%20%3C%200%5C%5C7.5-%5Csqrt%7B%5Cfrac%7B455%7D%7B8%7D%20%7D%20%3C%20x%20%3C%200)
X-int =(-3,0)
Y-int=(0,_1)
Slope: _1/3
From point A, draw a line segment at an angle to the given line, and about the same length. The exact length is not important. Set the compasses on A, and set its width to a bit less than one fifth of the length of the new line. Step the compasses along the line, marking off 5 arcs. Label the last one C. With the compasses' width set to CB, draw an arc from A just below it. With the compasses' width set to AC, draw an arc from B crossing the one drawn in step 4. This intersection is point D. Draw a line from D to B. Using the same compasses' width as used to step along AC, step the compasses from D along DB making 4 new arcs across the line. Draw lines between the corresponding points along AC and DB. Done. The lines divide the given line segment AB in to 5 congruent parts.
Slope=change in y/change in x (y2-y1/x2-x1)
Slope=-2-(-5)/3-0=3/3=1
answer: slope=1