The main component in a reflecting telescope is a mirror where the light will bounce off and is then focused into a smaller area. In contrast, a refracting telescope uses lenses that focus the light as it travels towards the other end.
Two different types of reflecting telescopes are:
1.Cassegrain reflector
2.Newtonian telescope
Explanation:
- The distinction between the two is in how they manipulate the incoming light in order to magnify the image. The main component in a reflecting telescope is a mirror where the light will bounce off and is then focused into a smaller area.
- Key advantage of reflecting telescopes is how big you can make them. With lenses, the maximum size is limited to about one meter, largely because of the problems stated above as well as the skyrocketing costs.
- The Newtonian telescope, also called the Newtonian reflector, is a type of reflecting telescope invented Sir Isaac Newton, using a concave primary mirror and a flat diagonal secondary mirror. The Newtonian telescope's simple design has made it very popular with amateur telescope makers.
- The Cassegrain reflector is a combination of a primary concave mirror and a secondary convex mirror, often used in optical telescopes and radio antennas, the main characteristic being that the optical path folds back onto itself, relative to the optical system's primary mirror entrance aperture.
Answer:
0.0365 A
Explanation:
Data provided in the question:
Peak value of the voltage, V = 17.0 volts
Resistance of the resistor, r = 329.0 ohm
Now,
The rms current (
) is given by the relation as:

on substituting the respective values, in the equation, we get

or
= 0.0365 A
Hence, the rms current is 0.0365 A
Answer:
1.98 × 10⁻³³m
Explanation:
It is given that,
Mass of the bullet, m = 27 g = 0.027 kg
Velocity of bullet, v = 800 m/s
The uncertainty in momentum is 0.20%. The momentum of the bullet is given by :

Uncertainty in momentum is,

We need to find the uncertainty in position. It can be calculated using Heisenberg uncertainty principal as :

Answer:
-20.158ft-lb
Explanation:
Check the attached files for the explanation.
Answer:
Option (a)
Explanation:
We will discard options that don't fit the situation:
Option b: <em>Incorrect </em>since if the driver "hits the gas" then velocity is augmenting and it's not constant.
Option c and d: <em>Incorrect </em>since the situation doesn't give us any information that could be related directly to the terrain or movement direction.
Option a: Correct. At <em>stage 1</em> we can assume the driver was going at constant speed which means acceleration is constantly zero. At <em>stage 2 </em>we can assume the driver augmented speed linearly, this is, with constant positive acceleration. At <em>stage 3 </em>we can assume the driver slowed the speed linearly, with constant negative acceleration.