Answer:
Explanation:
Distance travelled by wave = 8 x 2 = 16 m
Time taken = 4 s
velocity of pulse wave = distance / time
= 16 m / 4 s
= 4 m/s
Answer:
Explanation:
From the given information:
radius = 15 m
Time T = 23 s
a) Speed (v) = 

v = 4.10 m/s
b) The magnitude of the acceleration is:

a = 1.12 m/s²
c) True weight = mg
Apparent weight = normal force
From the top;
the normal force = upward direction,
weight is downward as well as the acceleration.
true weight - normal force = ma
apparent weight =mg - ma


= 0.886 m/s²
d)
From the bottom;
acceleration is upward, so:
apparent weight - true weight = ma
apparent weight = true weight + ma



= 1.114 m/s²
Answer:
U₁ = (ϵAV²)/6d
This means that the new energy of the capacitor is (1/3) of the initial energy before the increased separation.
Explanation:
The energy stored in a capacitor is given by (1/2) (CV²)
Energy in the capacitor initially
U = CV²/2
V = voltage across the plates of the capacitor
C = capacitance of the capacitor
But the capacitance of a capacitor depends on the geometry of the capacitor is given by
C = ϵA/d
ϵ = Absolute permissivity of the dielectric material
A = Cross sectional Area of the capacitor
d = separation between the capacitor
So,
U = CV²/2
Substituting for C
U = ϵAV²/2d
Now, for U₁, the new distance between plates, d₁ = 3d
U₁ = ϵAV²/2d₁
U₁ = ϵAV²/(2(3d))
U₁ = (ϵAV²)/6d
This means that the new energy of the capacitor is (1/3) of the initial energy before the increased separation.
Answer: 
Explanation:
We can solve this problem using the <u>Poiseuille equation</u>:
Where:
is the Volume flow rate
is the effective radius
is the length
is the difference in pressure
is the viscosity of blood
Solving: