<span>
Plan: Use Q = m · c · ΔT three times. Hot casting cools ΔT_hot = 500°C -
Tf. Cold water and steel tank heat ΔT_cold = Tf - 25°C. Set Q from hot
casting cooling = Q from cold tank heating.
here
m_cast · c_steel · ΔT_hot = (m_tank · c_steel + m_water · c_water) · ΔT_cold
m_cast · c_steel · (500°C - Tf) = (m_tank · c_steel + m_water · c_water) · (Tf - 25°C)
2.5 kg · 0.50 kJ/(kg K°) · (500°C - Tf) = (5 kg· 0.50 kJ/(kg K°) + 40 kg· 4.18 kJ/(kg K°)) · (Tf - 25°C)
Solve for Tf, remember that K° = C° (i.e. for ΔT's) </span>
Not enough information is given to answer this question.
Answer:
The maximum range
m
Explanation:
Given,
The initial velocity of the car, u = 30 m/s
The height of the cliff, h = 50 m
Let the car drives off the cliff with a horizontal velocity of 30 m/s.
The formula for a projectile that is projected from a height h from the ground is given by the relation
m
Where,
g - acceleration due to gravity
Substituting the values in the above equation
= 132.72 m
Hence, the car lands at a distance,
m
Breaking down sugar (glucose) is a chemical change. Sugar is a compound that can be broken down.
Answer: g = 10.0 m/s/s
Explanation:
For a simple pendulum, provided that the angle between the lowest and highest point of his trajectory be small, the oscillation period is given by the following expression:
T = 2π √L/g , where L = pendulum length, g= accelleration of gravity.
We can also define the period, as the time needed to complete a full swing, so from the measured values, we can conclude the following :
T = 140 sec/ 101 cycles = 1.39 sec
Equating both definitions for T, we can solve for g, as follows:
g = 4 π² L / T² = 4π². 0.49 m / (1.39)² = 10.0 m/s/s