<span>b) The force with a distance of 150 km is 889 N
c) The force with a distance of 50 km is 8000 N
This question looks like a mixture of a question and a critique of a previous answer. I'll attempt to address the original question.
Since the radius of the spherical objects isn't mentioned anywhere, I will assume that the distance from the center of each spherical object is what's being given. The gravitational force between two masses is given as
F = (G M1 M2)/r^2
where
F = Force
G = gravitational constant
M1 = Mass 1
M2 = Mass 2
r = distance between center of masses for the two masses.
So with a r value of 100 km, we have a force of 2000 Newtons. If we change the distance to 150 km, that increases the distance by a factor of 1.5 and since the force varies with the inverse square, we get the original force divided by 2.25. And 2000 / 2.25 = 888.88888.... when rounded to 3 digits gives us 889.
Looking at what looks like an answer of 890 in the question is explainable as someone rounding incorrectly to 2 significant digits.
If the distance is changed to 50 km from the original 100 km, then you have half the distance (50/100 = 0.5) and the squaring will give you a new divisor of 0.25, and 2000 / 0.25 = 8000. So the force increases to 8000 Newtons.</span>
Waves transfer energy but not matter
Answer:
1.25 m/s
Explanation:
Given,
Mass of first ball=0.3 kg
Its speed before collision=2.5 m/s
Its speed after collision=2 m/s
Mass of second ball=0.6 kg
Momentum of 1st ball=mass of the ball*velocity
=0.3kg*2.5m/s
=0.75 kg m/s
Momentum of 2nd ball=mass of the ball*velocity
=0.6 kg*velocity of 2nd ball
Since the first ball undergoes head on collision with the second ball,
momentum of first ball=momentum of second ball
0.75 kg m/s=0.6 kg*velocity of 2nd ball
Velocity of 2nd ball=0.75 kg m/s ÷ 0.6 kg
=1.25 m/s
Answer:
9.6J+88.2J=97.8J
Explanation:
Here the velocity of the seagull is given,mass is given and its height.
We have to find its mechanical energy my friend.
Mechanical energy=kinetic energy + potential energy.
First we will find kinetic energy.
For calculating kinetic energy we need mass and velocity,which are given here.
So, Ek=

So by substituting the values we get 9.6J.
Now we find the potential energy which is mgh.
By substituting the values we get 88.2J.
Then we add both of those and get 97.8J
I hope this satisfies you and make sure you contact me if it doesn't
Force , F = ma
F = m(v - u)/t
Where m = mass in kg, v= final velocity in m/s, u = initial velocity in m/s
t = time, Force is in Newton.
m= 1.2*10³ kg, u = 10 m/s, v = 20 m/s, t = 5s
F = 1.2*10³(20 - 10)/5
F = 2.4*10³ N = 2400 N