1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UkoKoshka [18]
3 years ago
14

A ball weighing 1 lb is attached to a string 2 feet long and is whirled in a vertical circle at a constant speed of 10 ft/sec.

Physics
1 answer:
fredd [130]3 years ago
6 0

Explanation:

It is given that,

Mass of the ball, m = 1 lb

Length of the string, l = r = 2 ft

Speed of motion, v = 10 ft/s

(a) The net tension in the string when the ball is at the top of the circle is given by :

F=\dfrac{mv^2}{r}-mg

F=m(\dfrac{v^2}{r}-g)

F=1\ lb\times (\dfrac{(10\ ft/s)^2}{2}-1\ lb\times 32\ ft/s^2)

F = 18 N

(b) The net tension in the string when the ball is at the bottom of the circle is given by :

F=\dfrac{mv^2}{r}+mg

F=m(\dfrac{v^2}{r}+g)

F=1\ lb\times (\dfrac{(10\ ft/s)^2}{2}+1\ lb\times 32\ ft/s^2)

F = 82 N

(c) Let h is the height where the ball at certain time from the top. So,

T=mg(\dfrac{r-h}{r})+\dfrac{mv^2}{r}

T=\dfrac{m}{r}(g(r-h)+v^2)

Since, v^2=u^2-2gh

T=\dfrac{m}{r}(u^2-3gh+gr)

Hence, this is the required solution.

You might be interested in
Part b suppose the magnitude of the gravitational force between two spherical objects is 2000 n when they are 100 km apart. what
kobusy [5.1K]
<span>b) The force with a distance of 150 km is 889 N c) The force with a distance of 50 km is 8000 N This question looks like a mixture of a question and a critique of a previous answer. I'll attempt to address the original question. Since the radius of the spherical objects isn't mentioned anywhere, I will assume that the distance from the center of each spherical object is what's being given. The gravitational force between two masses is given as F = (G M1 M2)/r^2 where F = Force G = gravitational constant M1 = Mass 1 M2 = Mass 2 r = distance between center of masses for the two masses. So with a r value of 100 km, we have a force of 2000 Newtons. If we change the distance to 150 km, that increases the distance by a factor of 1.5 and since the force varies with the inverse square, we get the original force divided by 2.25. And 2000 / 2.25 = 888.88888.... when rounded to 3 digits gives us 889. Looking at what looks like an answer of 890 in the question is explainable as someone rounding incorrectly to 2 significant digits. If the distance is changed to 50 km from the original 100 km, then you have half the distance (50/100 = 0.5) and the squaring will give you a new divisor of 0.25, and 2000 / 0.25 = 8000. So the force increases to 8000 Newtons.</span>
8 0
3 years ago
Read 2 more answers
I don't know the answer to 1
larisa86 [58]
Waves transfer energy but not matter
7 0
3 years ago
Read 2 more answers
A 0.300 kg ball, moving with a speed of 2.5 m/s, has a head-on collision with at 0.600 kg ball initially at rest. Assuming a per
FrozenT [24]

Answer:

1.25 m/s

Explanation:

Given,

Mass of first ball=0.3 kg

Its speed before collision=2.5 m/s

Its speed after collision=2 m/s

Mass of second ball=0.6 kg

Momentum of 1st ball=mass of the ball*velocity

=0.3kg*2.5m/s

=0.75 kg m/s

Momentum of 2nd ball=mass of the ball*velocity

=0.6 kg*velocity of 2nd ball

Since the first ball undergoes head on collision with the second ball,

momentum of first ball=momentum of second ball

0.75 kg m/s=0.6 kg*velocity of 2nd ball

Velocity of 2nd ball=0.75 kg m/s ÷ 0.6 kg

=1.25 m/s

4 0
3 years ago
A seagull flying horizontally at 8.00m/s carries a clam with a mass of 300g in its beak. Calculate the total mechanical energy o
Stells [14]

Answer:

9.6J+88.2J=97.8J

Explanation:

Here the velocity of the seagull is given,mass is given and its height.

We have to find its mechanical energy my friend.

Mechanical energy=kinetic energy + potential energy.

First we will find kinetic energy.

For calculating kinetic energy we need mass and velocity,which are given here.

So, Ek=

1 \div 2mv {?}^{2}

So by substituting the values we get 9.6J.

Now we find the potential energy which is mgh.

By substituting the values we get 88.2J.

Then we add both of those and get 97.8J

I hope this satisfies you and make sure you contact me if it doesn't

7 0
3 years ago
a 1.2x10^3 kilogram car is accelerated uniformly from 10. meters per second to 20 meters per second in 5.0 seconds. what is the
irinina [24]
Force , F = ma

F =  m(v - u)/t               

Where m = mass in kg, v= final velocity in m/s, u = initial velocity in m/s
t = time, Force is in Newton.

m= 1.2*10³ kg,  u = 10 m/s,  v = 20 m/s, t = 5s

F =  1.2*10³(20 - 10)/5

F = 2.4*10³ N = 2400 N


7 0
3 years ago
Other questions:
  • Humans start from a single cell. Eventually, as cells divide, they start to differentiate, or specialize. Some cells are special
    8·1 answer
  • Kyle, a 80.0 kg football player, leaps straight up into the air (with no horizontal velocity) to catch a pass. He catches the 0.
    11·2 answers
  • Compare the gravitational force on a 33 kg mass at the surface of the Earth (with ra-
    6·1 answer
  • What is produced when calcium reacts with fluorine in a synthesis reaction
    10·2 answers
  • Which of the following is an example of mechanical waves in nature?
    8·1 answer
  • Βββββββββββββ<br>fbntdbsv
    13·1 answer
  • “All dogs bark. Fido barks. Thus, Fido is a dog,” is an example of which of the following?
    13·1 answer
  • Is this statement true or false?
    13·2 answers
  • Evelynn is measuring the pitch of a piano note. What unit of measurement is she most likely recording her value in? hertz decibe
    11·2 answers
  • If you are sitting in a bus that is traveling along a straight, level road at 100 km/hr., you are traveling at 100 km/hr too. (a
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!