The answer is B
I used these equations then i putted it together.
Charge = number of ( electron or proton ) x charge of ( electron or proton )
Force = k x (q1 q2)/r²
Hi there!
To find the appropriate force needed to keep the block moving at a constant speed, we must use the dynamic friction force since the block would be in motion.
Recall:
The normal force of an object on an inclined plane is equivalent to the vertical component of its weight vector. However, the horizontal force applied contains a vertical component that contributes to this normal force.
We can plug in the known values to solve for one part of the normal force:
N = (1)(9.8)(cos30) + F(.5) = 8.49 + .5F
Now, we can plug this into the equation for the dynamic friction force:
Fd= (0.2)(8.49 + .5F) = 1.697 N + .1F
For a block to move with constant speed, the summation of forces must be equivalent to 0 N.
If a HORIZONTAL force is applied to the block, its horizontal component must be EQUIVALENT to the friction force. (∑F = 0 N). Thus:
Fcosθ = 1.697 + .1F
Solve for F:
Fcos(30) - .1F = 1.697
F(cos(30) - .1) = 1.697
F = 2.216 N
Answer:
B) trends method
I'm very sure of this answer
Aluminum metal is a good example of conductor of electricity while glass and paper are good example of insulators.
<h3>What is a conductor?</h3>
A conductor is material that allows easy passage of electric current through the.
<h3>Examples of conductors</h3>
All metals are good examples conductors. such as aluminum, iron, silver, etc.
<h3>What is a non conductor?</h3>
A non conductor or insulator is a material which does not allow easy passage of electric current through them.
<h3>Examples of insulators</h3>
Thus, aluminum metal is a good example of conductor of electricity while glass and paper are good example of insulators.
The complete question is below:
aluminium,metal,glass,and paper, are examples of what?
Learn more about conductors here: brainly.com/question/24154868
#SPJ1
(i) The total capacitance for the circuit is 5 μF.
(ii) The total charge stored in the circuit is 1 x 10⁻⁴ C.
(iii) The charge stored in 3μF capacitor is 6 x 10⁻⁶ C.
<h3>Total capacitance of the circuit</h3>
The total capacitance of the circuit is determined by reolving the series capacitors separate and parallel capacitors separate as well.
<h3>C1 and C2 are in series </h3>
<h3>C1 and C2 are parallel to C3</h3>
<h3>C(123) is series to C5 and C6</h3>
<h3>C7 and C8 are in series</h3>
<h3>Total capaciatnce of the circuit</h3>
Ct + C(78) = 2 μF + 3 μF = 5 μF
<h3 /><h3>Total charge stored in the circuit</h3>
The total charge stored in the capacitor is calculated as follows;
Q = CV
Q = (5 x 10⁻⁶) x (20)
Q = 1 x 10⁻⁴ C
<h3>Charge stored in 3μF capacitor</h3>
Q = (3 x 10⁻⁶) x (20)
Q = 6 x 10⁻⁶ C
Learn more about capacitance of capacitor here: brainly.com/question/13578522