Answer:
563.86 N
Explanation:
We know the buoyant force F = weight of air displaced by the balloon.
F = ρgV where ρ = density of air = 1.29 kg/m³, g = acceleration due to gravity = 9.8 m/s² and V = volume of balloon = 4πr/3 (since it is a sphere) where r = radius of balloon = 2.20 m
So, F = ρgV = ρg4πr³/3
substituting the values of the variables into the equation, we have
F = 1.29 kg/m³ × 9.8 m/s² × 4π × (2.20 m)³/3
= 1691.58 N/3
= 563.86 N
Answer:
2.75 m/s^2
Explanation:
The airplane's acceleration on the runway was 2.75 m/s^2
We can find the acceleration by using the equation: a = (v-u)/t
where a is acceleration, v is final velocity, u is initial velocity, and t is time.
In this case, v is 71 m/s, u is 0 m/s, and t is 26.1 s Therefore: a = (71-0)/26.1
a = 2.75 m/s^2
Answer:
3, 4, 2
Explanation:
I can't see the final ones.
Answer:
a) -2.038 m/s²
b) 40.33 mph
c) 312.5 m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration

Acceleration of the boat is -2.083 m/s² if the boat will stop at 150 m.

Speed of the boat by when it will hit the dock is 18.03 m/s
Converting to mph



Speed of the boat by when it will hit the dock is 40.33 mph

The distance at which the boat will have to start decelerating is 312.5 m