Redox is a type of chemical reaction in which the oxidation states of atoms are changed. Redox reactions are characterized by the actual or formal transfer of electrons between chemical species, most often with one species undergoing oxidation while another species undergoes reduction.
We are given with
V = <span>2.394 x 102 mL
P = </span><span>7.20 x 102 mm of Hg
T = </span><span>78 oC
We are asked to determine the mass of the sample in milligrams
Using the ideal gas law
n = PV / RT
n = </span>7.20 x 102 mm of Hg (2.394 x 102 mL) / R (78 + 273)
Use the appropriate value for R or just convert the values to SI and use R = 8.314
Then, solve for the mass of the sample by using the MW Oxygen which is 16 g/mol
Answer:
True
Explanation:
The value of the mole is equal to the number of atoms in exactly 12 grams of pure carbon-12. 12.00 g C-12 = 1 mol C-12 atoms = 6.022 × 1023 atoms • The number of particles in 1 mole is called Avogadro's Number (6.0221421 x 1023).
Answer: 1.11 atm
Explanation:
The unit of pressure include kilopascal (kPa), atmospheres (atm), mmHg etc
Now, given that:
Air pressure = 113 KPa
Convert kPa to atm
If 101.325 kPa = 1 atm
113 kPa = Z atm
To get the value of Z, cross multiply
Z atm x 101.325 kPa = 1 atm x 113 kPa
Z = ( 1 atm x 113 kPa) / 101.325 kPa
Z = 1.11 atm
Thus, the pressure is 1.11 atm
<span>When an atom or compound is oxidized, its properties change. For example, when an iron object undergoes oxidation, it is transformed because it has lost electrons. Unoxidized iron is a strong, structurally sound metal, while oxidized iron is a brittle, reddish powder. The diagram below illustrates what happens to an atom of iron as it is oxidized
</span>