Answer:
I'm sure but send thru this picture for the question so I can help.
Answer:
Explanation:
Stereoisomers are two or more atoms that have the same bonding order of atoms but there is a difference spatial arrangement of the atoms in space.
A plane of symmetry divides a molecule into two equal halves.
A chiral stereoisomer are not superimposed on a mirror image , Hence they do not posses a plane of symmetry.
As a result to that. these non-superimposable mirror images are said to be Enantiomers.
However, a Fischer Projection emanates from a two - dimensional figure which is used for presenting a three - dimensional organic molecules.
From the given question;
Fischer projection for an enantiomer of 2-bromo-2,3-dihydroxypropanal with the bromine oriented horizontally to the left and the hydroxide group oriented horizontally to the right.
we can sketch the way the enantiomer of 2-bromo-2,3-dihydroxypropanal can be seen like the one shown below:
CH₂OH
|
|
|
Br -------------|----------------OH
|
|
|
CHO
The objective of this question is to drawn the perspective formula of the molecule.
So , from the attached file below; we can see the perspective formula of the molecule in a well structured 3-D format.
49.5g
Explanation:
Mass of salt = 15g
Volume of solution = 1L
Volume of given solution = 3.3L
Unknown:
Mass of salt in the solution = ?
Solution:
Since we have been given the concentration of the salt in the solution, we can use it to solve the problem.
Concentration; 15g/L
Given;
In 1L of the solution we have 15g of salt,
In 3.3L of the solution we will have 3.3 x 15 = 49.5g
The salt is the solute and it represents the dissolved substances.
learn more:
Concentration brainly.com/question/4641902
#learnwithBrainly
I believe it was decomposition reaction
Answer:
1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s
Explanation:
You can predict the order of orbital energies by constructing a diagram as shown below.
Follow the arrows to get the orbitals in order of increasing energy.
The order is
1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s