Answer:
- Solution of equation ( x ) = <u>7</u>
Step-by-step explanation:
In this question we have given with an equation that is <u>4</u><u> </u><u>(</u><u> </u><u>5</u><u>x</u><u> </u><u>-</u><u> </u><u>2</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>2</u><u> </u><u>(</u><u> </u><u>9</u><u>x</u><u> </u><u>+</u><u> </u><u>3 </u><u>)</u><u>.</u> And we are asked to solve this equation that means we have to find the value of <u>x</u><u>.</u><u> </u>
<u>Solution</u><u> </u><u>:</u><u> </u><u>-</u>
<u>
</u>
<u>Step </u><u>1</u><u> </u><u>:</u> Removing parenthesis :

<u>Step </u><u>2</u><u> </u><u>:</u> Adding 8 from both sides :

On further calculations we get :

<u>Step </u><u>3 </u><u>:</u> Subtracting 18 from both sides :

On further calculations we get :

<u>Step </u><u>4</u><u> </u><u>:</u> Dividing with 2 on both sides :

On further calculations we get :

- <u>Therefore</u><u>,</u><u> </u><u>solution</u><u> </u><u>of </u><u>this </u><u>equation</u><u> </u><u>is </u><u>7</u><u> </u><u>or </u><u>we </u><u>can </u><u>say </u><u>that </u><u>value </u><u>of </u><u>this </u><u>equation</u><u> </u><u>is </u><u>7</u><u> </u><u>.</u>
<u>Verifying</u><u> </u><u>:</u><u> </u><u>-</u>
We are verifying our answer by substituting value of x in given equation. So ,
- 4 ( 5x - 2 ) = 2 ( 9x + 3 )
- 4 [ 5 ( 7 ) - 2 ] = 2 [ 9 ( 7 ) + 3 ]
- 4 ( 35 - 2 ) = 2 ( 63 + 3 )
<u>Therefore</u><u>,</u><u> </u><u>our </u><u>value</u><u> for</u><u> x</u><u> is</u><u> </u><u>correct </u><u>.</u>
<h2>
<u>#</u><u>K</u><u>e</u><u>e</u><u>p</u><u> </u><u>Learning</u></h2>
Answer:
6/12, 8/12, and 9/12.
Step-by-step explanation:
Let's find the least common denominator:
First, the least common multiple of 2, 3, and 4 is 12.
12 is divisible by 2, 3, and 4.
<u>Next, multiply the denominators with the numerators:</u>
Products: 6/12, 8/12, and 9/12
Answer:
- <u><em>About 0.22</em></u>
Explanation:
There are two sets:
- Set W of incoming seniors who took AP World History, and
- Set E of incoming seniors who took AP European History
And there is a subset, which is the intersection of those two sets:
- Subset W ∩ E of senior students who took both.
The incoming seniors who are allowed to enroll in AP U.S. History, call them the subset S, is the set of those students that belong to W or E or both W ∩E.
By property of sets:
- S = W + E - W∩E = 175 + 36 - 33 = 178
Then, 178 out of 825 incoming seniors took one or both courses, and the desired probability of a randomly selected incoming senior is allowed to enroll in AP U.S. History is:
Before outlier : 7.25
After outlier : 4
7.25 - 4 = 3.25
So the mean decreases by 3.25 when the outlier is removed.
The answer would be 859.
<span><span><span><span><span><span>(10)</span><span>(5)</span></span>+6</span>)</span><span>(<span>13+2</span>)</span></span>+19
</span><span>=<span><span><span>(<span>50+6</span>)</span><span>(<span>13+2</span>)</span></span>+19
</span></span><span>=<span><span>56<span>(<span>13+2</span>)</span></span>+19
</span></span><span>=<span><span><span>(56)</span><span>(15)</span></span>+19
</span></span><span>=<span>840+19
</span></span><span>=<span>859
Hope this helps!!
</span></span>