Explanation:
Mutualism is defined as an interaction between individuals of different species that results in positive (beneficial) effects on per capita reproduction and/or survival of the interacting populations.
The four nitrogenous bases in DNA are adenine, guanine, cytosine, and thymine. They pair A-T, G-C and when transfering with RNA, A-U, which is known as Uracil, so, the pairs would be...
ATGCT
↓↓↓↓↓
UACGA
I hope this helps!
Answer: The human body is organized at different levels, starting with the cell. Cells are organized into tissues, and tissues form organs. Organs are organized into organ systems such as the skeletal and muscular systems
Explanation:
The answer to this is passive hyperemia.
Answer:
For both actin and microtubule polymerization, nucleotide hydrolysis is important for decreasing the binding strength between subunits on filaments.
Explanation:
Cytoskeletal filaments are common to eucaryotic cells and are impotartant to the spatial organization of cells. Intermediate filaments provide mechanical strength and resistance to shear stress. Microtubules determine the positions of membrane-enclosed organelles and direct intracellular transport. Actin filaments determine the shape of the cell's surface and are necessary for whole-cell locomotion. A large number of accessory proteins are present that link the filaments to other cell components, as well as to each other. Accessory proteins are essential for the assembly of the cytoskeletal filaments in particular locations, and it includes the motor proteins that either move organelles along the filaments or move the filaments themselves.
Actin filaments and microtubules are assembled with expenditure of energy i.e the ATP/GTP tightly bound to actin/tubulin is irreversibly hydrolyzed to ADP/GTP during the assembly process, and liberation of Pi in the medium occurs subsequent to the incorporation of subunits in the polymer. Pi release acts as a switch, causing the destabilization of protein-protein interactions in the polymer, therefore regulating the dynamics of these fibres. The progress is made in four areas: the chemistry of the NTPase reaction; the structure of the intermediates in nucleotide hydrolysis and the nature of the conformational switch; the regulation of parameters involved in dynamic instability of microtubules; and the possible involvement of nucleotide hydrolysis in the macroscopic organization of these polymers in highly concentrated solutions, compared with the simple case of a equilibrium polymers.