Let x be the new volume
10x = 20(5)
10x = 100
x = 10
Have a beautiful day!
Answer: 34.65 N towards charge 8 μC.
Explanation:
The electrostatic force between two charges is given by:

where, k is the Coulomb constant = 8.9875 × 10⁹ N.m²/C²
q₁ and q₂ are the two charges separated by distance r.
The distance between charges 8 μC and -7 μC is r = 2 cm -(-10 cm) = 12 cm = 0.12 m
The force between these charges is:

Negative sign implies it is an attractive force.
The distance between -3 μC charge and -7 μC charge is r' = 10 cm -2 cm = 8 cm = 0.8 m.
The electrostatic force between these charges is:

It is a repulsive force.
Net force on the -7 μC charge is:
Fn = F + F'
we can add them directly as they are acting in one direction along the x-axis.
Fn = -34.95 N + 0.295 = -34.65 N
Thus, the net force is attractive in nature and it is towards charge 8 μC.
Power = ( force * distance) / time
work = force * distance
work = power * time
= 41250 J or 41kJ
B is the answer. because it is a physical change
We will solve this problem using the direct concept related to band gap energy, that is, a band gap is the distance between the valence band of electrons and the conduction band, i. e, the energy range in a solid where no electron states (Electronic state) can exist Mathematically can be described as,

Where,
h = Planck's constant
n = Energy level
mc = Effective mass of the point charge
R = Size of the particle
As you can see the energy is inversely proportional to the size of the particle:

Therefore if the size is decreased, the amount of energy is increased.