Answer:
A point on the outside rim will travel 157.2 meters during 30 seconds of rotation.
Explanation:
We can find the distance with the following equation since the acceleration is cero (the disk rotates at a constant rate):

Where:
v: is the tangential speed of the disk
t: is the time = 30 s
The tangential speed can be found as follows:

Where:
ω: is the angular speed = 100 rpm
r: is the radius = 50 cm = 0.50 m
Now, the distance traveled by the disk is:

Therefore, a point on the outside rim will travel 157.2 meters during 30 seconds of rotation.
I hope it helps you!
The only vertical forces are weight and normal force, and they balance since the surface is horizontal. The horizontal forces are the applied force (uppercase F) in the direction the block slides and the frictional force (lowercase f) in the opposite direction.
Apply Newton's 2nd Law in the horizontal direction:
ΣF = ma
F - f = ma
where f = µmg
F - µmg = ma
F = m(a +µg)
F = (20 kg)(1.4 m/s² + 0.28(9.8 m/s²)
F = 83 N
Answer:
15.7 m
Explanation:
m = mass of the sled = 125 kg
v₀ = initial speed of the sled = 8.1 m/s
v = final speed of sled = 0 m/s
F = force applied by the brakes in opposite direction of motion = 261
d = stopping distance for the sled
Using work-change in kinetic energy theorem
- F d = (0.5) m (v² - v₀²)
- (261) d = (0.5) (125) (0² - 8.1²)
d = 15.7 m
I don't think that 4m has anything to do with the problem.
anyway. here.
A___________________B_______C
where A is the point that the train was released.
B is where the wheel started to stick
C is where it stopped
From A to B, v=2.5m/s, it takes 2s to go A to B so t=2
AB= v*t = 2.5 * 2 = 5m
The train comes to a stop 7.7 m from the point at which it was released so AC=7.7m
then BC= AC-AB = 7.7-5 = 2.7m
now consider BC
v^2=u^2+2as
where u is initial speed, in this case is 2.5m/s
v is final speed, train stop at C so final speed=0, so v=0
a is acceleration
s is displacement, which is BC=2.7m
substitute all the number into equation, we have
0^2 = 2.5^2 + 2*a*2.7
0 = 6.25 + 5.4a
a = -6.25/5.4 = -1.157
so acceleration is -1.157m/(s^2)